Deeksha Vedantu Logo
Deeksha Vedantu Logo

Sets

Introduction to Sets

A set is one of the most fundamental concepts in mathematics, representing a well-defined collection of distinct objects, known as elements or members. Sets allow mathematicians to group related objects and apply logical operations to them. Elements of a set can include numbers, letters, or even other sets, and the study of sets forms the foundation of several branches of mathematics, including algebra, geometry, calculus, and more.

Sets are denoted using curly braces \boldsymbol{\{ \}}, and their elements are separated by commas. For example, the set of natural numbers less than 5 is:
\boldsymbol{\{ 1, 2, 3, 4 \}}

Definition of a Set

A set is defined as a collection of distinct, well-defined objects. These objects, called elements, must be clearly identifiable, meaning it should be clear whether a given object belongs to the set.

  • Example: The set of vowels in the English alphabet is:
    \boldsymbol{\{ a, e, i, o, u \}}
    The elements in this set are the individual vowels. Elements in a set are unique—there are no duplicate elements within a set. A common way to indicate that an element belongs to a set is to use the membership symbol \boldsymbol{\in}.

Elements of a Set:

Elements are the individual objects that make up a set. If an element \boldsymbol{x} belongs to a set \boldsymbol{A}, we write \boldsymbol{x \in A}.

For instance, consider the set \boldsymbol{B = \{ \textbf{apple}, \textbf{banana}, \textbf{cherry} \}}

Here, ‘apple’ is an element of set B, denoted as \boldsymbol {\textbf{apple} \in} B}.

Some standard sets in mathematics are:

  • \mathbb{N}: Set of natural numbers
  • \mathbb{Z}: Set of integers
  • \mathbb{Q}: Set of rational numbers
  • \mathbb{R}: Set of real numbers
  • \mathbb{C}: Set of complex numbers
  • \mathbb{{Z}^+}:Set of positive integers
  • \mathbb{{Z}^*}: Set of non-negative integers

Representation of Sets

There are two primary ways to represent sets: Roster form and Set-builder form.

1. Roster/Tabular Form:

In this form, all the elements of the set are listed explicitly within curly braces, separated by commas.

  • Example: The set of natural numbers less than 5:
    \boldsymbol{\{ 1, 2, 3, 4 \}}
    Here, the elements are written in a straightforward list.

2. Set-Builder Form:

In this form, a rule is used to describe the elements of the set, rather than listing them explicitly.

  • Example: The set of natural numbers less than 5 can be represented as:
    \boldsymbol{\{ x \ | \ x < 5, x \in \mathbb{N} \}}
    This reads as “the set of all \boldsymbol{x} such that \boldsymbol{x} is less than 5 and belongs to the set of natural numbers.”

Types of Sets

Sets can be classified into various types based on their characteristics:

1. Empty Set (Null Set):

  • An empty set contains no elements and is denoted by \boldsymbol{\{ \} \textbf{ or } {\emptyset}}.
  • Example: The set of prime numbers divisible by 6:
    \boldsymbol{\emptyset}
    Since there are no prime numbers divisible by 6, this set contains no elements.

2. Finite Set:

  • A finite set contains a limited number of elements.
  • Example: The set of even numbers less than 10:
    \boldsymbol{\{ 2, 4, 6, 8 \}}

3. Infinite Set:

  • An infinite set contains an unlimited number of elements.
  • Example: The set of natural numbers:
    \boldsymbol{\{ 1, 2, 3, 4, \dots \}}

4. Subset:

  • A set \boldsymbol{A} is a subset of set \boldsymbol{B} if all elements of \boldsymbol{A} are also elements of \boldsymbol{B}. This is denoted as \boldsymbol{A \subseteq B}.
  • Example: If \boldsymbol{A = \{1, 2\}} and \boldsymbol{B = \{1, 2, 3, 4\}}, then \boldsymbol{A \subseteq B}.

5. Power Set:

  • The power set of a set \boldsymbol{A} is the set of all subsets of \boldsymbol{A}, including the empty set and \boldsymbol{A} itself. It is denoted as \boldsymbol{P(A)}.
  • Example: If \boldsymbol{A = \{1, 2\}}, the power set of \boldsymbol{A} is:
    \boldsymbol{P(A) = \{ \emptyset, \{1\}, \{2\}, \{1, 2\} \}}

6. Universal Set:

  • A universal set is a set that contains all possible elements under consideration in a particular context. It is denoted by the symbol \boldsymbol{U}.
  • Example: For a discussion on natural numbers, the universal set may be:
    \boldsymbol{U = \{ 1, 2, 3, 4, \dots \}}

7. Equal Sets:

  • Two sets are equal if they contain exactly the same elements.
  • Example: If \boldsymbol{A = \{1, 2, 3\}} and \boldsymbol{B = \{3, 1, 2\}}, then \boldsymbol{A = B}.

8. Cartesian Product:

  • The Cartesian product of two sets \boldsymbol{A} and \boldsymbol{B}, denoted as \boldsymbol{A \times B}, is the set of all ordered pairs where the first element is from \boldsymbol{A} and the second element is from \boldsymbol{B}.
  • Example: If \boldsymbol{A = \{1, 2\}} and \boldsymbol{B = \{a, b\}}, then: \boldsymbol{A \times B = \{(1, a), (1, b), (2, a), (2, b)\}}

Operations on Sets

Several operations can be performed on sets to combine or compare them. These operations include:

1. Union ( ∪ ):

  • The union of two sets \boldsymbol{A} and \boldsymbol{B} is the set of elements that belong to either \boldsymbol{A}, \boldsymbol{B}, or both. It is denoted by:
    \boldsymbol{A \cup B}
  • Example: If \boldsymbol{A = \{1, 2, 3\}} and \boldsymbol{B = \{3, 4, 5\}}, then: \boldsymbol{A \cup B = \{1, 2, 3, 4, 5\}}

2. Intersection ( ∩ ):

  • The intersection of two sets \boldsymbol{A} and \boldsymbol{B} is the set of elements that are common to both sets. It is denoted by:
    \boldsymbol{A \cap B}
  • Example: If \boldsymbol{A = \{1, 2, 3\}} and \boldsymbol{B = \{3, 4, 5\}}, then: \boldsymbol{A \cap B = \{3\}}

3. Difference ( A – B ):

  • The difference of two sets \boldsymbol{A} and \boldsymbol{B}, denoted by \boldsymbol{A - B}, is the set of elements that belong to \boldsymbol{A} but not to \boldsymbol{B}.
  • Example: If \boldsymbol{A = \{1, 2, 3\}} and \boldsymbol{B = \{3, 4, 5\}}, then: \boldsymbol{A - B = \{1, 2\}}

4. Complement ( A’ ):

  • The complement of a set \boldsymbol{A}, denoted as \boldsymbol{A'}, is the set of all elements in the universal set that are not in \boldsymbol{A}.
  • Example: If \boldsymbol{U = \{1, 2, 3, 4, 5\}} and \boldsymbol{A = \{1, 2\}}, then: \boldsymbol{A' = \{3, 4, 5\}}

Properties of Sets in Mathematics

Sets follow certain key properties that define their behavior and relationships in set theory. Here are the main properties of sets:

1. Commutative Property:

Union:

  • The union of two sets is commutative, meaning that the order of the sets does not matter.
    \boldsymbol{A \cup B = B \cup A}
  • Example: If \boldsymbol{A = \{1, 2\}} and \boldsymbol{B = \{2, 3\}}, then \boldsymbol{A \cup B = \{1, 2, 3\}} and \boldsymbol{B \cup A = \{1, 2, 3\}}.

Intersection:

  • The intersection of two sets is also commutative.
    \boldsymbol{A \cap B = B \cap A}
  • Example: If \boldsymbol{A = \{1, 2\}} and \boldsymbol{B = \{2, 3\}}, then \boldsymbol{A \cap B = \{2\}} and \boldsymbol{B \cap A = \{2\}}.

2. Associative Property:

Union:

  • The union of sets is associative, meaning that the grouping of the sets does not change the result.
    \boldsymbol{(A \cup B) \cup C = A \cup (B \cup C)}
  • Example: If \boldsymbol{A = \{1\}}, \boldsymbol{B = \{2\}}, and \boldsymbol{C = \{3\}}, then both groupings give \boldsymbol{\{1, 2, 3\}}.

Intersection:

  • The intersection of sets is also associative.
    \boldsymbol{(A \cap B) \cap C = A \cap (B \cap C)}
  • Example: If \boldsymbol{A = \{1, 2\}}, \boldsymbol{B = \{2\}}, and \boldsymbol{C = \{2, 3\}}, then both groupings give \boldsymbol{\{2\}}.

3. Distributive Property:

Intersection over Union:

  • The intersection of a set with the union of two other sets is distributed as follows:
    \boldsymbol{A \cap (B \cup C) = (A \cap B) \cup (A \cap C)}
  • Example: If \boldsymbol{A = \{1, 2\}}, \boldsymbol{B = \{2, 3\}}, and \boldsymbol{C = \{1, 4\}}, both sides result in \boldsymbol{\{1, 2\}}.

Union over Intersection:

  • The union of a set with the intersection of two other sets is distributed as follows:
    \boldsymbol{A \cup (B \cap C) = (A \cup B) \cap (A \cup C)}
  • Example: If \boldsymbol{A = \{1, 2\}}, \boldsymbol{B = \{2, 3\}}, and \boldsymbol{C = \{2, 4\}}, both sides result in \boldsymbol{\{1, 2, 3\}}.

4. Identity Property:

Union:

  • The union of any set \boldsymbol{A} with the empty set results in \boldsymbol{A}.
    \boldsymbol{A \cup \emptyset = A}
  • Example: If \boldsymbol{A = \{1, 2, 3\}}, then \boldsymbol{A \cup \emptyset = \{1, 2, 3\}}.

Intersection:

  • The intersection of any set \boldsymbol{A} with the universal set results in \boldsymbol{A}.
    \boldsymbol{A \cap U = A}
  • Example: If \boldsymbol{U = \{1, 2, 3, 4, 5\}} and \boldsymbol{A = \{1, 2\}}, then \boldsymbol{A \cap U = A}.

5. Complement Laws:

Complement of a Union:

  • The complement of the union of two sets is equal to the intersection of their complements.
    \boldsymbol{(A \cup B)' = A' \cap B'}
  • Example: If \boldsymbol{U = \{1, 2, 3, 4\}}, \boldsymbol{A = \{1\}}, and \boldsymbol{B = \{2\}}, then \boldsymbol{(A \cup B)' = \{3, 4\}}.

Complement of an Intersection:

  • The complement of the intersection of two sets is equal to the union of their complements.
    \boldsymbol{(A \cap B)' = A' \cup B'}
  • Example: If \boldsymbol{A = \{1, 2\}} and \boldsymbol{B = \{2\}}, the left-hand side results in \boldsymbol{\{3, 4\}}.

6. Idempotent Property:

Union:

  • The union of a set with itself is the set itself.
    \boldsymbol{A \cup A = A}
  • Example: If \boldsymbol{A = \{1, 2\}}, then \boldsymbol{A \cup A = \{1, 2\}}.

Intersection:

  • The intersection of a set with itself is the set itself.
    \boldsymbol{A \cap A = A}
  • Example: If \boldsymbol{A = \{1, 2\}}, then \boldsymbol{A \cap A = \{1, 2\}}.

7. Involution Property:

  • The complement of the complement of a set is the set itself.
    \boldsymbol{(A')' = A}
  • Example: If \boldsymbol{U = \{1, 2, 3, 4\}} and \boldsymbol{A = \{1, 2\}}, then \boldsymbol{A' = \{3, 4\}} and \boldsymbol{(A')' = \{1, 2\}}.

8. Domination Property:

Union:

  • The union of any set with the universal set \boldsymbol{U} is always \boldsymbol{U}.
    \boldsymbol{A \cup U = U}
  • Example: If \boldsymbol{U = \{1, 2, 3, 4\}} and \boldsymbol{A = \{1\}}, then \boldsymbol{A \cup U = \{1, 2, 3, 4\}}.

Intersection:

  • The intersection of any set with the empty set \boldsymbol{\emptyset} is always \boldsymbol{\emptyset}.
    \boldsymbol{A \cap \emptyset = \emptyset}
  • Example: If \boldsymbol{A = \{1, 2, 3\}}, then \boldsymbol{A \cap \emptyset = \emptyset}.

Cartesian Product of Sets

The Cartesian product of two sets \boldsymbol{A} and \boldsymbol{B}, denoted as \boldsymbol{A \times B}, is the set of all possible ordered pairs where the first element is from \boldsymbol{A} and the second element is from \boldsymbol{B}. This operation is essential in defining relations between sets, especially in areas like coordinate geometry and computer science.

  • Example:
    If \boldsymbol{A = \{1, 2\}} and \boldsymbol{B = \{x, y\}}, then the Cartesian product \boldsymbol{A \times B} is:
    \boldsymbol{A \times B = \{(1, x), (1, y), (2, x), (2, y)\}}

Applications of Sets in Real Life

Sets have many practical applications across various disciplines:

1. Data Science and Machine Learning:

Sets are used to handle and manage data efficiently. Operations such as union, intersection, and difference help categorize and analyze large datasets. Sets are also used to filter data, removing duplicates and ensuring uniqueness, which is crucial in machine learning algorithms.

2. Database Systems:

In databases, sets play a fundamental role in organizing and managing data. SQL operations such as JOIN, UNION, INTERSECT, and MINUS are essentially set operations that combine or compare datasets.

3. Logic and Reasoning:

Sets form the basis of logical reasoning and Boolean algebra. Logical operations like AND, OR, and NOT are analogous to set operations like intersection, union, and complement.

4. Probability and Statistics:

In probability theory, sets are used to represent events, and set operations help calculate the likelihood of different events occurring. For example, the probability of the union of two events can be determined by understanding how those events overlap or intersect.

5. Computer Science:

Sets are widely used in computer science, particularly in algorithms and data structures. A hash set is a commonly used data structure to store unique items, allowing for efficient search, insertion, and deletion operations.

6. Geometry and Graph Theory:

Sets are essential in graph theory, where graphs are defined as sets of vertices and edges. This has applications in networking, transportation, and even in social media platforms, where relationships between users are modeled using graphs.

Common Mistakes with Sets

Students often make certain common mistakes when working with sets. Here are a few to avoid:

  1. Repeating Elements:
    Remember that a set cannot contain duplicate elements. Each element should be listed only once.
  2. Mixing Up Subset and Proper Subset:
    A subset \boldsymbol{A \subseteq B} means all elements of \boldsymbol{A} are in \boldsymbol{B}, and \boldsymbol{A} could be equal to \boldsymbol{B}. A proper subset \boldsymbol{A \subset B} means \boldsymbol{A} is strictly smaller than \boldsymbol{B} and cannot be equal to \boldsymbol{B}.
  3. Misunderstanding Union and Intersection:
    The union operation combines elements from both sets, while the intersection only includes common elements. Be sure to use these operations correctly when solving problems.

FAQs

How are sets represented?2024-09-11T20:10:31+05:30

Sets can be represented in statement form, roster form, or set-builder form, depending on how their elements are defined.

What is the difference between a subset and a proper subset?2024-09-11T20:10:03+05:30

A subset includes all elements of another set, including possibly being the same set, while a proper subset includes all elements but is not identical to the set.

What is the Cartesian product of sets?2024-09-11T20:08:45+05:30

The Cartesian product of two sets \boldsymbol{A} and \boldsymbol{B}, denoted as \boldsymbol{A\times B} , is the set of all ordered pairs where the first element is from \boldsymbol{A} and the second element is from \boldsymbol{B}.

How are sets used in real life?2024-09-11T20:07:14+05:30

Sets are used in various fields like data science, logic, computer science, database management, probability, and statistics. For example, sets are used to group data, perform operations on databases, and calculate probabilities in statistical models.

What is the union of two sets?2024-09-11T20:06:09+05:30

The union of two sets includes all elements that are in either of the sets or in both. It is denoted by \boldsymbol{A \cup B}.

What are the different types of sets?2024-09-11T20:04:29+05:30

Some common types of sets are finite sets, infinite sets, empty sets (null sets), universal sets, power sets, subsets, and equal sets.

What is a set in mathematics?2024-09-11T20:01:07+05:30

A set is a collection of distinct and well-defined objects, called elements. These elements can be anything from numbers to letters or even other sets.

Related Topics

Join Deeksha Vedantu

> PU + Competitive Exam CoachingPreferred Choice For Toppers25+ Years of Academic Excellence70k+ Success Stories

Related Pages

Latest Posts

  • Choosing the Right Electives CBSE vs. ICSE Class 10
  • 10th Grade Physical Education Staying Fit and Active
  • Cultivating Leadership Skills in Teenagers
  • How to effectively Communicate with Your High School Teen
  • Difference Between IIT and NIT
  • Difference Between BITSAT and JEE

Contact Us

    By submitting my data, I authorize Deeksha and its representatives to Call, SMS, Email or WhatsApp me about its products and offers. This consent overrides any registration for DNC / NDNC., I agree to be contacted.

    Head Office

    Ace Creative Learning Pvt Ltd
    Deeksha House,
    163/B, 6th Main, 3rd Cross,
    JP Nagar 3rd Phase, Bengaluru,
    Karnataka – 560078