Deeksha Vedantu Logo
Deeksha Vedantu Logo

Periodicity of Valence or Oxidation States of Elements

Introduction to Periodicity of Valence States

Valency is a measure of an element’s ability to combine with other elements. It is defined by the number of electrons an atom needs to gain or lose to achieve a stable electron configuration.

What is an Oxidation State?

The oxidation state of an atom indicates the number of electrons gained or lost by it.

Valency and oxidation states are key properties of elements, determined by their electron configurations. Valency is the number of electrons an atom must lose or gain to achieve stability, while the oxidation state is the charge of an atom due to electron loss or gain.

Valency and Oxidation State

Valence electrons are those in an atom’s outermost shell and define its valency. For elements in the s-block and p-block of the periodic table, valency is often calculated as either the number of valence electrons or eight minus that number.

For d-block and f-block elements, valency depends on both valence electrons and electrons in d and f orbitals, with common valencies being 2 and 3.

Valency and Oxidation State

Valency of the First 30 Elements in the Periodic Table

Here’s a table listing the valency of the first 30 elements based on their electron configurations:

ElementSymbolAtomic NumberValency
HydrogenH11
HeliumHe20
LithiumLi31
BerylliumBe42
BoronB53
CarbonC64
NitrogenN73
OxygenO82
FluorineF91
NeonNe100
SodiumNa111
MagnesiumMg122
AluminumAl133
SiliconSi144
PhosphorusP153
SulfurS162
ChlorineCl171
ArgonAr180
PotassiumK191
CalciumCa202
ScandiumSc213
TitaniumTi224
VanadiumV235,4
ChromiumCr242
ManganeseMn257,4,2
IronFe262,3
CobaltCo273,2
NickelNi282
CopperCu292,1
ZincZn302

This table summarizes the valency of the first 30 elements, showing how many electrons each element can gain, lose, or share to form a stable electron configuration.

Trends in Oxidation States

Across a Period: Moving left to right, the number of valence electrons increases from 1 to 8. Valency increases from 1 to 4 and then decreases to zero when combined with hydrogen or oxygen. For example, in Na2O and F2O, F is more electronegative than O in F2O, giving F a -1 oxidation state and O a +2. In Na2O, O is more electronegative, giving O a -2 oxidation state and Na a +1.

Within a Group: The number of valence electrons remains constant down a group, so elements in the same group have the same valency.

Guidelines for Assigning Oxidation States

  • Elements in their natural form (O2, H2, etc.) have an oxidation state of zero.
  • Oxygen typically has an oxidation state of -2, except in peroxides where it is -1.
  • Hydrogen is usually +1, but -1 in metal hydrides (e.g., NaH).
  • Halogens are generally -1 unless combined with oxygen or each other.
  • Alkali metals (Na, K, etc.) have an oxidation state of +1.
  • Alkaline earth metals (Mg, Ca, etc.) have an oxidation state of +2.

Finding Valency of Elements

Valency is determined by the number of electrons in the outer shell. One method to find valency is by consulting the periodic table, where elements in the same group typically have the same valency. For instance, elements in group 8 have a valency of 8, indicating high stability.

By understanding these basic principles, the periodic trends in valency and oxidation states of elements can be easily comprehended.

FAQs

Why do elements have different oxidation states?2024-07-26T12:11:00+05:30

Elements have different oxidation states due to their ability to lose or gain different numbers of electrons. This variability depends on the element’s electron configuration and its position in the periodic table.

Can an element have more than one oxidation state?2024-07-26T12:10:26+05:30

Yes, many elements can have multiple oxidation states. Transition metals, in particular, often exhibit a variety of oxidation states due to their complex electron configurations.

How do oxidation states vary within a group?2024-07-26T12:10:09+05:30

Within a group, the number of valence electrons remains the same, so elements in the same group typically exhibit similar valency and oxidation states.

How do oxidation states vary across a period?2024-07-26T12:09:42+05:30

As you move from left to right across a period, the number of valence electrons increases from 1 to 8. The oxidation state can vary, usually increasing in a similar pattern until reaching group 14, then decreasing.

How do valency and oxidation state relate to each other?2024-07-26T12:09:24+05:30

Valency is a specific case of oxidation state where the atom’s combining capacity is considered without assigning charges. Oxidation state, on the other hand, always involves the effective charge due to electron gain or loss.

How is valency determined for elements in the periodic table?2024-07-26T12:08:48+05:30

For s-block and p-block elements, valency is typically the number of valence electrons or eight minus the number of valence electrons. For d-block and f-block elements, valency includes electrons in both valence and d or f orbitals.

What is an oxidation state?2024-07-26T12:08:20+05:30

The oxidation state of an atom indicates the number of electrons an atom has gained or lost. It represents the effective charge of an atom in a compound due to the transfer of electrons.

What is valency?2024-07-26T12:06:59+05:30

Valency is the measure of an element’s ability to combine with other elements. It represents the number of electrons an atom needs to gain, lose, or share to achieve a stable electron configuration.

Related Topics

Join Deeksha Vedantu

> PU + Competitive Exam CoachingPreferred Choice For Toppers25+ Years of Academic Excellence70k+ Success Stories

Related Pages

Latest Posts

  • How to Avoid Distractions While Studying
  • How to Increase Your General Knowledge
  • 11 of the Most Effective Ways to Study and Get Better Grades
  • Goal Setting A Crucial Skill for 10th Grade Students
  • Skill Development Opportunities for Class 10 Graduates Enhancing Employability
  • Next Steps After Class 10 Understanding Higher Education Pathways

Contact Us

    By submitting my data, I authorize Deeksha and its representatives to Call, SMS, Email or WhatsApp me about its products and offers. This consent overrides any registration for DNC / NDNC., I agree to be contacted.

    Head Office

    Ace Creative Learning Pvt Ltd
    Deeksha House,
    163/B, 6th Main, 3rd Cross,
    JP Nagar 3rd Phase, Bengaluru,
    Karnataka – 560078