The reactivity of metals and non-metals is determined by their tendency to lose or gain electrons to achieve a stable electron configuration, similar to noble gases. Metals tend to lose electrons to form positive ions (cations), while non-metals tend to gain electrons to form negative ions (anions). This exchange of electrons forms ionic bonds in compounds. Here’s a detailed explanation of how metals and non-metals react with each other.
Ionic Bond Formation
Metals react with non-metals to form ionic compounds. In these reactions, metals donate electrons to non-metals. As a result:
- Metals become cations (positively charged ions).
- Non-metals become anions (negatively charged ions).
These oppositely charged ions attract each other to form a stable ionic compound.
Example:
- Sodium Chloride (
): Sodium (
), a metal, has one electron in its outermost shell. It donates this electron to chlorine (
), a non-metal that requires one electron to complete its valence shell.
The electrostatic attraction between and
forms sodium chloride (
), or table salt.
Real-life Application:
Salt in daily life: Sodium chloride (table salt) is one of the most common ionic compounds used in food and industry. It plays a vital role in human health by regulating fluid balance and nerve function.
Properties of Ionic Compounds
Ionic compounds formed by the reaction between metals and non-metals exhibit distinct properties:
- High Melting and Boiling Points: Due to the strong electrostatic forces between the cations and anions, a large amount of energy is required to break the bonds, resulting in high melting and boiling points.
- Solubility: Ionic compounds are generally soluble in water but insoluble in organic solvents like kerosene and petrol.
- Electrical Conductivity: Ionic compounds conduct electricity when dissolved in water or in the molten state. This is because the ions are free to move and carry electric current.
Example:
- Sodium chloride (
) dissolves in water to form
and
ions, which can move freely and conduct electricity.
Formation of Magnesium Oxide (MgO)
Magnesium, a metal, reacts with oxygen, a non-metal, to form magnesium oxide. Magnesium donates two electrons to oxygen, forming a strong ionic bond.
This results in the formation of magnesium oxide (), a compound used in refractory materials for high-temperature applications.
Amphoteric Nature of Certain Metal Oxides
Some metal oxides, like aluminum oxide () and zinc oxide (
), exhibit both acidic and basic properties. They react with both acids and bases to form salts and water. These oxides are called amphoteric oxides.
Example:
- Aluminum oxide (
) reacts with hydrochloric acid (
) to form aluminum chloride (
) and water:
- It also reacts with sodium hydroxide (
) to form sodium aluminate (
) and water:
Real-life Application:
Aluminum Oxide in Ceramics: Aluminum oxide is used in the production of ceramics and refractory materials due to its high melting point and resistance to chemical attack.
Practice Questions with Answers
Q1: What type of bond is formed between sodium and chlorine in sodium chloride ()?
- Answer: An ionic bond is formed between sodium and chlorine, where sodium donates one electron to chlorine.
Q2: Explain why magnesium reacts with oxygen to form magnesium oxide ().
- Answer: Magnesium loses two electrons to form a
ion, and oxygen gains two electrons to form an
ion. The electrostatic attraction between these oppositely charged ions results in the formation of magnesium oxide.
Q3: How does aluminum oxide exhibit amphoteric behavior?
- Answer: Aluminum oxide reacts with both acids (to form salts like aluminum chloride) and bases (to form sodium aluminate), showing its amphoteric nature.
FAQs
Related Topics
- Acids and Bases
- Periodicity of Valence or Oxidation States of Elements
- Bohr’s Model Of Atom
- Occurrence of Metals
- Acids, Bases, and Salts
- Classification of Carbohydrates and its Structure
- Atomic Mass of Elements
- How Strong Are Acid Or Base Solutions?
- Suspension
- Electronic Configuration of First 30 Elements
- First 20 Elements of the Periodic Table
- Chemical Formula
- Versatile Nature Of Carbon
- Carbon and its Compounds
- Chemistry FAQs
Get Social