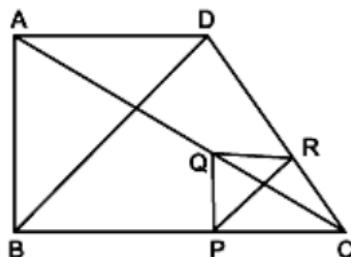

Chapter-Triangles
 Question bank

Q1.

D and E are points on the sides AB and AC respectively of a ΔABC such that $DE \parallel BC$. Find the value of x when $AD = x$ cm, $DB = (x - 2)$ cm, $AE = (x + 2)$ cm and $EC = (x - 1)$ cm.

Q2.


In the adjoining figure, ABCD is a trapezium in which $CD \parallel AB$ and its diagonals intersect at O. If $AO = (2x + 1)$ cm, $OC = (5x - 7)$ cm, $DO = (7x - 5)$ cm and $OB = (7x + 1)$ cm, find the value of x .

D _____ C

Q3.

In figure, two triangles ABC and DBC lie on the same side of base BC. P is a point on BC such that $PQ \parallel BA$ and $PR \parallel BD$. Prove that $QR \parallel AD$.

Q4.

P and Q are points on the sides AB and AC respectively of a triangle ABC. If $AP = 2$ cm, $PB = 4$ cm, $AQ = 3$ cm, $QC = 6$ cm, prove that $BC = 3PQ$.

Q5.

A girl of height 90 cm is walking away from the base of a lamp-post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

Q6.

State and prove Basic proportionality Theorem.

Q7.

ABC is a right-angled triangle, right-angled at A. A circle is inscribed in it. The lengths of the two sides containing the right angle are 6cm and 8 cm. Find the radius of the in circle.

Q8.

X and Y are points on the sides AB and AC, respectively of a triangle ABC such that $\frac{AX}{AB} = \frac{AY}{AC} = 2$ cm and $YC = 6$ cm. Find whether $XY \parallel BC$ or not.

Q9.

i. In the given figure, $\angle AEF = \angle AFE$ and E is the mid-point of CA. Prove that

$$\frac{BD}{CD} = \frac{BF}{CE}$$

Q10.

Let ABC be a triangle D and E be two points on side AB such that $AD = BE$. If $DP \parallel BC$ and $EQ \parallel AC$, then prove that $PQ \parallel AB$.

Answer:

Board Term 1 2019