

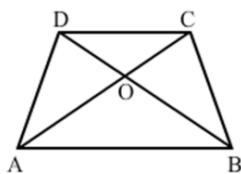
Chapter-Triangles Question bank

Q1.

D and E are points on the sides AB and AC respectively of a ΔABC such that $DE \parallel BC$. Find the value of x when $AD = x$ cm, $DB = (x - 2)$ cm, $AE = (x + 2)$ cm and $EC = (x - 1)$ cm.

Q2.

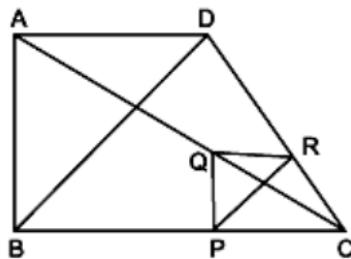
In the adjoining figure, ABCD is a trapezium in which $CD \parallel AB$ and its diagonals intersect at O. If $AO = (2x + 1)$ cm, $OC = (5x - 7)$ cm, $DO = (7x - 5)$ cm and $OB = (7x + 1)$ cm, find the value of x .



D _____ C

Q3.

In figure, two triangles ABC and DBC lie on the same side of base BC. P is a point on BC such that $PQ \parallel BA$ and $PR \parallel BD$. Prove that $QR \parallel AD$.



Q4.

P and Q are points on the sides AB and AC respectively of a triangle ABC. If $AP = 2$ cm, $PB = 4$ cm, $AQ = 3$ cm, $QC = 6$ cm, prove that $BC = 3PQ$.

Q5.

A girl of height 90 cm is walking away from the base of a lamp-post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

Q6.

State and prove Basic proportionality Theorem.

Q7.

ABC is a right-angled triangle, right-angled at A. A circle is inscribed in it. The lengths of the two sides containing the right angle are 6cm and 8 cm. Find the radius of the in circle.

Q8.

X and Y are points on the sides AB and AC, respectively of a triangle ABC such that $\frac{AX}{AB} = \frac{AY}{AC} = 2$ cm and $YC = 6$ cm. Find whether $XY \parallel BC$ or not.

Q9.

i. In the given figure, $\angle AEF = \angle AFE$ and E is the mid-point of CA. Prove that

$$\frac{BD}{CD} = \frac{BF}{CE}$$

Q10.

Let ABC be a triangle D and E be two points on side AB such that $AD = BE$. If $DP \parallel BC$ and $EQ \parallel AC$, then prove that $PQ \parallel AB$.

Answer:

Board Term 1 2019

Solutions

Solution 1.

In $\triangle ABC$, it is given that $DE \parallel BC$.

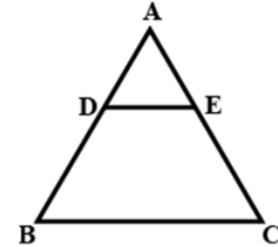
By Basic Proportionality Theorem, we have $\frac{AD}{DB} = \frac{AE}{EC}$

$$\Rightarrow \frac{x}{x-2} = \frac{x+2}{x-1}$$

$$\Rightarrow x(x-1) = (x-2)(x+2)$$

$$\Rightarrow x^2 - x = x^2 - 4$$

$$\Rightarrow x = 4 \text{ cm}$$



Solution 2.

$\triangle AOB \sim \triangle COD$ (By AA Similarity as $\angle OAB = \angle OCD$ and $\angle OBA = \angle ODC$ – Alternate Interior angles)

So, their corresponding sides are proportional

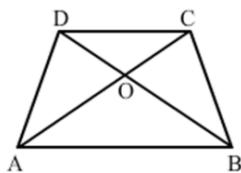
$$\therefore \frac{AO}{OC} = \frac{BO}{OD} \Rightarrow \frac{2x+1}{5x-7} = \frac{7x+1}{7x-5} \Rightarrow (5x-7)(7x+1) = (7x-5)(2x+1)$$

$$\Rightarrow 35x^2 + 5x - 49x - 7 = 14x^2 - 10x + 7x - 5 \Rightarrow 21x^2 - 41x - 2 = 0$$

$$\Rightarrow 21x^2 - 42x + x - 2 = 0 \Rightarrow 21x(x-2) + 1(x-2) = 0$$

$$\Rightarrow (x-2)(21x+1) = 0 \Rightarrow x = 2, -\frac{1}{21}$$

$$\therefore x \neq -\frac{1}{21} \quad \therefore x = 2$$



Solution 3:

Ans:

Given : In $\triangle ABC$, $PQ \parallel AB$ and $PR \parallel BD$

To prove : $QR \parallel AD$

Proof : By BPT $\frac{CP}{BP} = \frac{CQ}{AQ}$... (i)

Now in $\triangle BCD$, $PR \parallel BD$

\Rightarrow By using BPT $\frac{CP}{BP} = \frac{CR}{RD}$... (ii)

From (i) and (ii), $\frac{CQ}{AQ} = \frac{CR}{RD} \Rightarrow$ By converse of BPT, $QR \parallel AD$

Solution 4.

$$\text{Ans: } \frac{AP}{PB} = \frac{2}{4} = \frac{1}{2} \text{ ... (i)} \quad \frac{AQ}{QC} = \frac{3}{6} = \frac{1}{2} \text{ ... (ii)}$$

$$\text{From (i) and (ii)} \quad \frac{AP}{PB} = \frac{AQ}{QC} \Rightarrow PQ \parallel BC$$

In $\triangle ABC$ and $\triangle APQ$.

$$\frac{AB}{AP} = \frac{AC}{AQ} \quad (\because PQ \parallel BC)$$

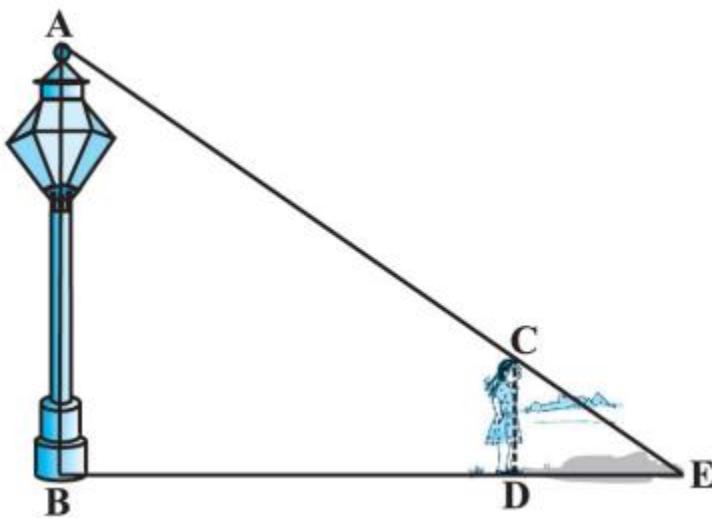
$\angle A = \angle A$ (Common)

$\therefore \triangle ABC \sim \triangle APQ$, (SAS similarity)

$$\Rightarrow \frac{AB}{AP} = \frac{BC}{PQ} \Rightarrow \frac{AP+PB}{AP} = \frac{BC}{PQ}$$

$$\Rightarrow \frac{2+4}{2} = \frac{BC}{PQ} \Rightarrow \frac{6}{2} = \frac{BC}{PQ} = \frac{1}{3} \Rightarrow BC = 3PQ. \text{ Hence proved.}$$

Solution 5.



Let AB denote the lamp-post and CD the girl after walking for 4 seconds away from the lamp-post. From the figure, you can see that DE is the shadow of the girl. Let DE be x metres.

Now, $BD = 1.2 \text{ m} \times 4 = 4.8 \text{ m}$.

Note that in ΔABE and ΔCDE ,

$\angle B = \angle D$ (Each is of 90° because lamp-post as well as the girl are standing vertical to the ground)

and $\angle E = \angle E$ (Same angle)

So, $\Delta ABE \sim \Delta CDE$ (AA similarity criterion)

Therefore,

$$\frac{BE}{DE} = \frac{AB}{CD}$$

i.e., $\frac{4.8 + x}{x} = \frac{3.6}{0.9}$ ($90 \text{ cm} = \frac{90}{100} \text{ m} = 0.9 \text{ m}$)

i.e., $4.8 + x = 4x$

i.e., $3x = 4.8$

i.e., $x = 1.6$

So, the shadow of the girl after walking for 4 seconds is 1.6 m long.

Solution 6.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Proof : We are given a triangle ABC in which a line parallel to side BC intersects other two sides AB and AC at D and E respectively (see Fig. 6.10).

We need to prove that $\frac{AD}{DB} = \frac{AE}{EC}$.

Let us join BE and CD and then draw DM \perp AC and EN \perp AB.

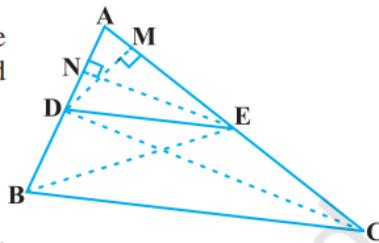


Fig. 6.10

Now, area of $\triangle ADE$ ($= \frac{1}{2}$ base \times height) $= \frac{1}{2} AD \times EN$.

Recall from Class IX, that area of $\triangle ADE$ is denoted as $\text{ar}(ADE)$.

$$\text{So, } \text{ar}(ADE) = \frac{1}{2} AD \times EN$$

$$\text{Similarly, } \text{ar}(BDE) = \frac{1}{2} DB \times EN,$$

$$\text{ar}(ADE) = \frac{1}{2} AE \times DM \text{ and } \text{ar}(DEC) = \frac{1}{2} EC \times DM.$$

$$\text{Therefore, } \frac{\text{ar}(ADE)}{\text{ar}(BDE)} = \frac{\frac{1}{2} AD \times EN}{\frac{1}{2} DB \times EN} = \frac{AD}{DB} \quad (1)$$

$$\text{and } \frac{\text{ar}(ADE)}{\text{ar}(DEC)} = \frac{\frac{1}{2} AE \times DM}{\frac{1}{2} EC \times DM} = \frac{AE}{EC} \quad (2)$$

Note that $\triangle BDE$ and $\triangle DEC$ are on the same base DE and between the same parallels BC and DE.

$$\text{So, } \text{ar}(BDE) = \text{ar}(DEC) \quad (3)$$

Therefore, from (1), (2) and (3), we have :

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Solution 7.

(Ans: r=2)

$$BC = 10\text{cm}$$

$$y + z = 8\text{cm}$$

$$x + z = 6\text{cm}$$

$$x + y = 10$$

$$\Rightarrow x + y + z = 12$$

$$z = 12 - 10$$

$$z = 2\text{ cm}$$

$$\therefore \text{radius} = 2\text{cm}$$

Solution 8.

$$\frac{AX}{AB} = \frac{1}{4}$$

$$\text{i.e., } AX = 1K, AB = 4K$$

(K-constant)

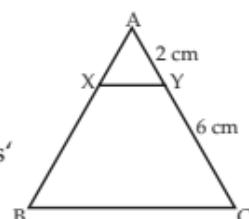
$$\therefore BX = AB - AX \\ = 4K - 1K = 3K$$

$$\text{Now, } \frac{AX}{XB} = \frac{1K}{3K} = \frac{1}{3}$$

$$\text{and, } \frac{AY}{YC} = \frac{2}{6} = \frac{1}{3}$$

$$\frac{AX}{XB} = \frac{AY}{YC}$$

$\therefore XY \parallel BC$
 (By converse of Thales' theorem)


Solution 9.

Ans: Draw $CG \parallel DF$

In $\triangle BDF$

$CG \parallel DF$

$$\therefore \frac{BD}{CD} = \frac{BF}{GF} \quad \dots \dots \dots (1)$$

BPT

In $\triangle AFE$

$$\angle AEF = \angle AFE$$

$$\Rightarrow AF = AE$$

$$\Rightarrow AF = AE = CE \quad \dots \dots \dots (2)$$

In $\triangle ACG$

E is the mid point of AC

$$\Rightarrow FG = AF$$

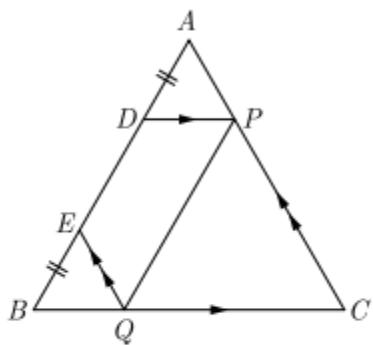
\therefore From (1) & (2)

$$\frac{BD}{CD} = \frac{BF}{CE}$$

Hence proved

Solution 10.

As per given condition we have drawn the figure below.



In $\triangle ABC$, $DP \parallel BC$

By BPT we have $\frac{AD}{DB} = \frac{AP}{PC}$, ... (1)

Similarly, in $\triangle ABC$, $EQ \parallel AC$

$$\frac{BQ}{QC} = \frac{BE}{EA} \quad \dots (2)$$

From figure, $EA = AD + DE$
 $= BE + ED \quad (BE = AD)$
 $= BD$

Therefore equation (2) becomes,

$$\frac{BQ}{QC} = \frac{AD}{BD} \quad \dots (3)$$

From (1) and (3), we have

$$\frac{AP}{PC} = \frac{BQ}{QC}$$

By converse of BPT,

$$PQ \parallel AB \quad \text{Hence Proved}$$