

Chapter-Triangles Question bank

Q1. In the given figure PA, QB and RC are each perpendicular to AC. If AP = x, BQ = y and CR = z, then

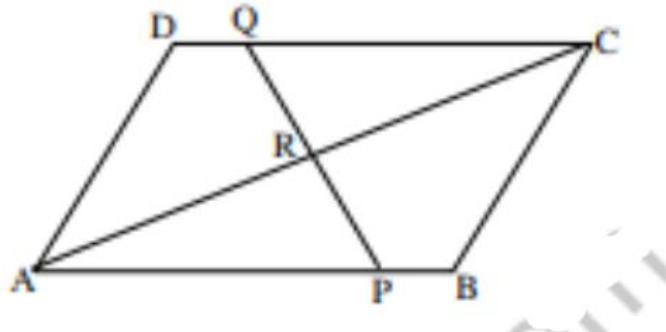
prove that $\frac{1}{x} + \frac{1}{z} = \frac{1}{y}$

Q2.

$\triangle ABC$ is an isosceles triangle in which $AB = AC = 10$ cm $BC = 12$ cm $PQRS$ is a rectangle inside the isosceles triangle. Given $PQ = SR = y$, $PS = PR = 2x$. Prove that $x = 6 - \frac{3y}{4}$.

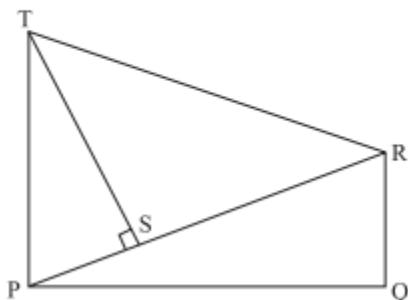
Q3.

i. If A be the area of a right triangle and b be one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2Ab}{\sqrt{b^4 + 4A^2}}$.


ii.

Q4.

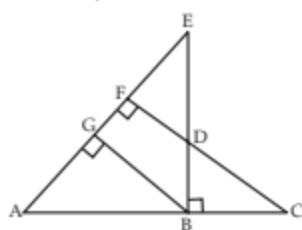
In a trapezium $ABCD$, $AB \parallel DC$ and $DC = 2AB$. $EF = AB$, where E and F lies on BC and AD respectively such that $\frac{BE}{EC} = \frac{4}{3}$ diagonal DB intersects EF at G . Prove that, $7EF = 11AB$.


Q5.

ABCD is a parallelogram in the given figure, AB is divided at P and CD and Q so that $AP:PB=3:2$ and $CQ:QD=4:1$. If PQ meets AC at R, prove that $AR=\frac{3}{7}AC$.

Q6.

In the given figure, RQ and TP are perpendicular to PQ , also $TS \perp PR$ prove that $ST \cdot RQ = PS \cdot PQ$.

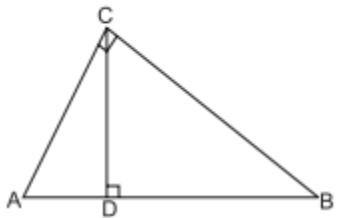

Q7.

In given figure, $EB \perp AC$, $BG \perp AE$ and $CF \perp AE$.

Prove that:

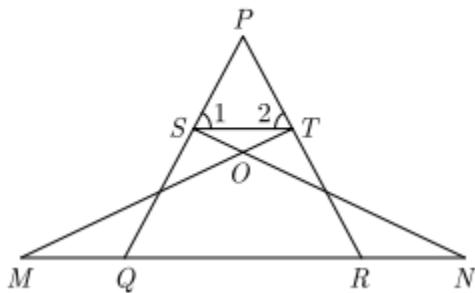
(i) $\triangle ABG \sim \triangle DCB$

(ii) $\frac{BC}{BD} = \frac{BE}{BA}$



Q8.

Two right triangles ABC and DBC are drawn on the same hypotenuse BC and on the same side of BC . If AC and BD intersect at P , prove that $AP \times PC = BP \times DP$.


Q9.

. In Fig. $\angle ACB = 90^\circ$ and $CD \perp AB$, prove that $CD^2 = BD \times AD$.

Q10.

. In given figure $\angle 1 = \angle 2$ and $\Delta NSQ \sim \Delta MTR$, then prove that $\Delta PTS \sim \Delta PRO$.

