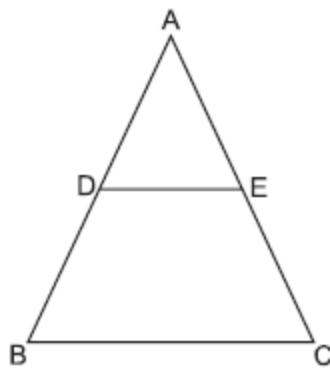


Chapter-Triangles Question bank

Q1.

In Fig., $DE \parallel BC$, $AD = 1$ cm and $BD = 2$ cm. what is the ratio of the ar ($\triangle ABC$) to the ar ($\triangle ADE$)?



Q2.

In $\triangle DEW$, $AB \parallel EW$. If $AD = 4$ cm, $DE = 12$ cm and $DW = 24$ cm, then find the value of DB .

Q3.

In Fig. , if $\triangle ABC \sim \triangle DEF$ and their sides of lengths (in cm) are marked along them, then find the lengths of sides of each triangle.

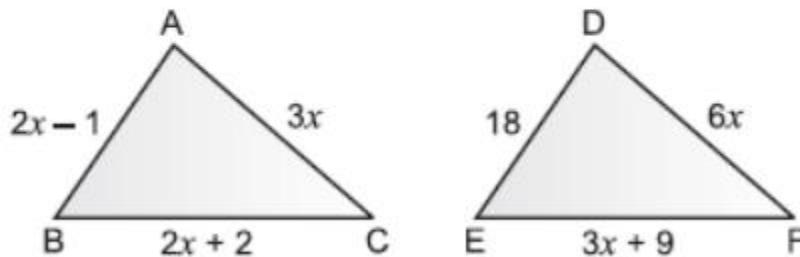


Fig.

Q4.

In Fig. , $\angle D = \angle E$ and $\frac{AD}{DB} = \frac{AE}{EC}$, prove that BAC is an isosceles triangle.

Q5.

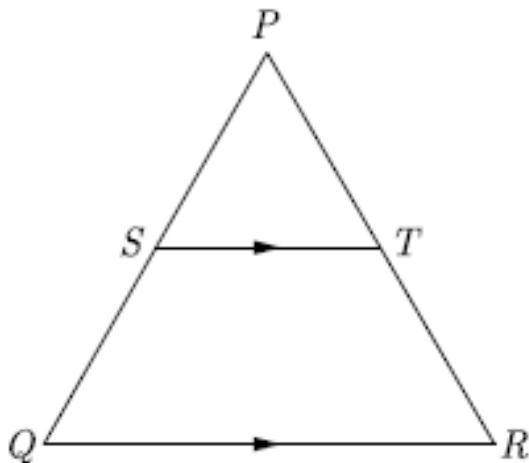
Two right triangles ABC and DBC are drawn on the same hypotenuse BC and on the same side of BC . If AC and BD intersect at P , prove that $AP \times PC = BP \times DP$.

Q6.

In ΔABC , if X and Y are points on AB and AC respectively such that $\frac{AX}{XB} = \frac{3}{4}$, $AY = 5$ and $YC = 9$, then state whether XY and BC parallel or not.

Q7.

In the given figure, in a triangle PQR , $ST \parallel QR$ and $\frac{PS}{SQ} = \frac{3}{5}$ and $PR = 28$ cm, find PT .

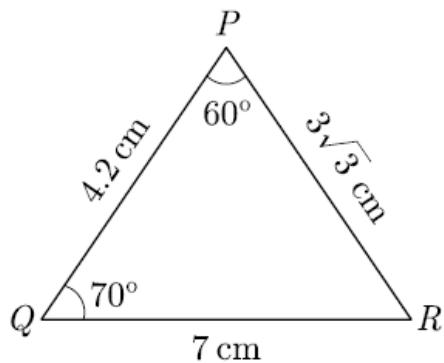
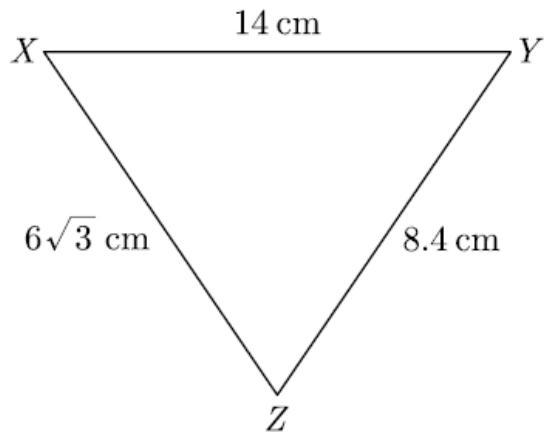


Q8.

$ABCD$ is a trapezium in which $AB \parallel CD$ and its diagonals intersect each other at the point O . Show that $\frac{AO}{BO} = \frac{CO}{DO}$.

Q9.

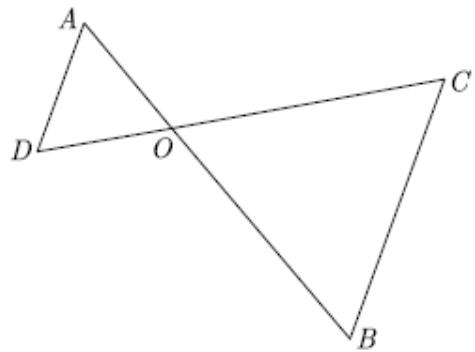
In the given figures, find the measure of $\angle X$.



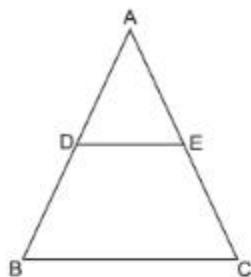
Q10.

In the given figure, $OA \times OB = OC \times OD$, show that

$\angle A = \angle C$ and $\angle B = \angle D$.



Solution 1.



Given,

$$AD = 1 \text{ cm}, BD = 2 \text{ cm}$$

$$\therefore AB = 1 + 2 = 3 \text{ cm}$$

$$\text{Also, } DE \parallel BC \quad (\text{Given})$$

$$\therefore \angle ADE = \angle ABC \quad \dots(\text{i})$$

(corresponding angles)

 In $\triangle ABC$ and $\triangle ADE$

$$\angle A = \angle A \quad (\text{common})$$

$$\angle ABC = \angle ADE \quad [\text{by equation (i)}]$$

$$\therefore \triangle ABC \sim \triangle ADE \quad (\text{by AA rule})$$

$$\therefore \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle ADE)} = \left(\frac{AB}{AD} \right)^2$$

$$\text{or} \quad \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle ADE)} = \left(\frac{3}{1} \right)^2 = \frac{9}{1}$$

$$\therefore \text{ar}(\triangle ABC) : \text{ar}(\triangle ADE) = 9 : 1$$

Solution 2.

Let $BD = x$ cm.

$\therefore DW = 24$ cm.

Then, $BW = (24 - x)$ cm, $AE = 12 - 4 = 8$ cm

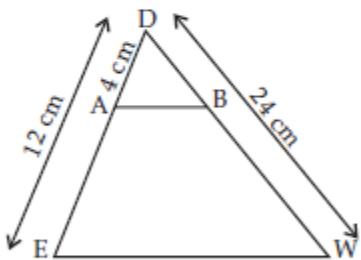
In $\triangle DEW$, $AB \parallel EW$

$$\therefore \frac{AD}{AE} = \frac{BD}{BW} \quad [\text{Thales' Theorem}]$$

$$\Rightarrow \frac{4}{8} = \frac{x}{24-x}$$

$$\Rightarrow 8x = 96 - 4x$$

$$\Rightarrow 12x = 96$$



$$\Rightarrow x = \frac{96}{12} = 8 \text{ cm}$$

$$\therefore DB = 8 \text{ cm}$$

Solution 3.

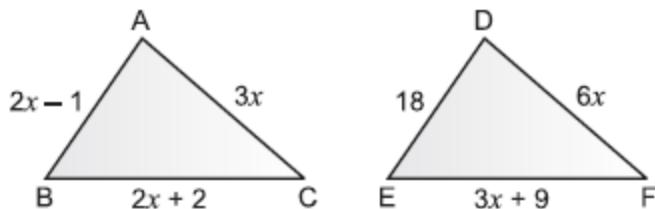


Fig.

Given : $\triangle ABC \sim \triangle DEF$

$$\therefore \frac{AB}{DE} = \frac{AC}{DF}$$

[Corresponding parts of similar triangles]

$$\Rightarrow \frac{2x - 1}{18} = \frac{3x}{6x}$$

$$\Rightarrow \frac{2x - 1}{18} = \frac{1}{2}$$

$$\Rightarrow 4x - 2 = 18$$

$$\Rightarrow 4x = 20$$

$$\Rightarrow x = 5$$

Now, lengths of sides of triangle ABC are,

$$AB = 2x - 1 = 9 \text{ cm}$$

$$BC = 2x + 2 = 12 \text{ cm}$$

$$AC = 3x = 15 \text{ cm}$$

And, lengths of sides of triangle DEF are,

$$DE = 18 \text{ cm}$$

$$EF = 3x + 9 = 24 \text{ cm}$$

$$DF = 6x = 30 \text{ cm} \qquad \text{Ans.}$$

Solution 4.

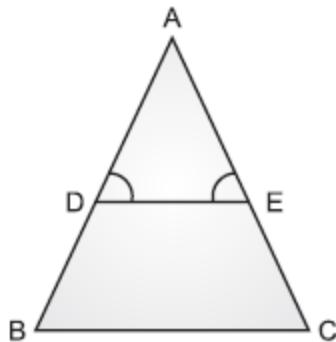


Fig.

 Given : $\angle D = \angle E$

 and, $\frac{AD}{DB} = \frac{AE}{EC}$

 To prove : $\triangle ABC$ is an isosceles triangle

 Proof : In $\triangle ABC$, $\frac{AD}{DB} = \frac{AE}{EC}$ (given)

 $\Rightarrow DE \parallel BC$

{By converse of Basic Proportionality theorem}

 $\therefore \angle ADE = \angle ABC$... (i)

 { \because Corresponding angles are equal as $DE \parallel BC$ }

 and $\angle AED = \angle ACB$... (ii)

 But $\angle ADE = \angle AED$ (Given) ... (iii)

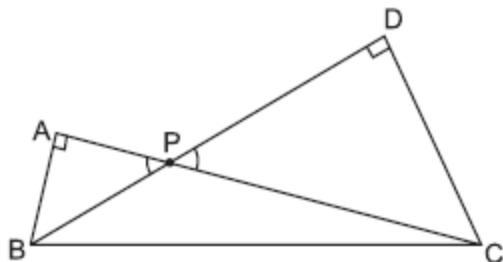
 $\therefore \angle ABC = \angle ACB$

(From eq. (i), (ii) and (iii))

 $\Rightarrow AB = AC$
 $\therefore \triangle ABC$ is an isosceles triangle as two of its sides are equal. Hence Proved.

Solution 5.

Given, $\triangle ABC$ and $\triangle DBC$ are right angle triangles, right angled at A and D respectively, on same side of BC . AC & BD intersect at P .



In $\triangle APB$ and $\triangle PDC$,

$$\angle A = \angle D = 90^\circ$$

$$\angle APB = \angle DPC \text{ (Vertically opposite)}$$

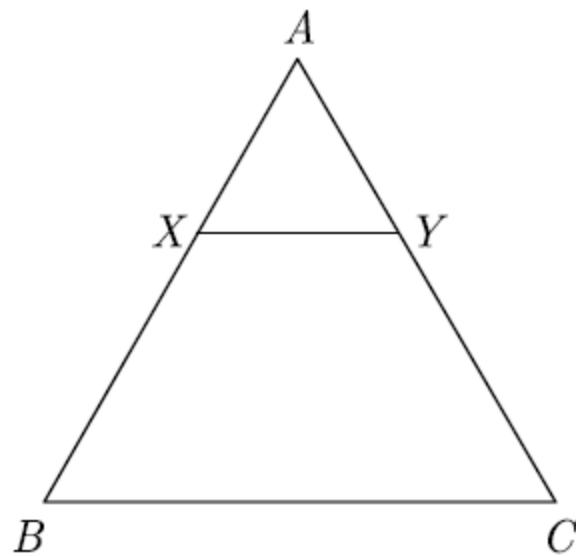
$\therefore \triangle APB \sim \triangle DPC$ (By AA Similarity)

$$\therefore \frac{AP}{BP} = \frac{PD}{PC} \quad (\text{by c.s.s.t.})$$

$\Rightarrow AP \times PC = BP \times PD.$ Hence Proved.

Solution 6.

As per question we have drawn figure given below.



In this figure we have

$$\frac{AX}{XB} = \frac{3}{4}, AY = 5 \text{ and } YC = 9$$

Now $\frac{AX}{XB} = \frac{3}{4}$ and $\frac{AY}{YC} = \frac{5}{9}$

Since $\frac{AX}{XB} \neq \frac{AY}{YC}$

Hence XY is not parallel to BC .

Solution 7.

We have $\frac{PS}{SQ} = \frac{3}{5}$

$$\frac{PS}{PS+SQ} = \frac{3}{3+5}$$

$$\frac{PS}{PQ} = \frac{3}{8}$$

We also have, $ST \parallel QR$, thus by BPT we get

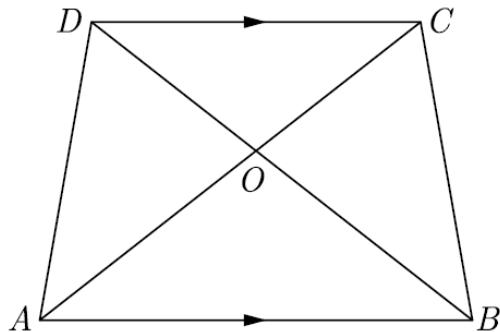
$$\frac{PS}{PQ} = \frac{PT}{PR}$$

$$PT = \frac{PS}{PQ} \times PR$$

$$= \frac{3 \times 28}{8} = 10.5 \text{ cm}$$

Solution 8.

As per given condition we have drawn the figure below.



In $\triangle AOB$ and $\triangle COD$, $AB \parallel CD$,

Thus due to alternate angles

$$\angle OAB = \angle DCO$$

$$\text{and} \quad \angle OBA = \angle ODC$$

By AA similarity we have

$$\Delta AOB \sim \Delta COD$$

For corresponding sides of similar triangles we have

$$\frac{AO}{CO} = \frac{BO}{DO}$$

$$\frac{AO}{BO} = \frac{CO}{DO} \quad \text{Hence Proved}$$

Solution 9.

From given figures,

$$\frac{PQ}{ZY} = \frac{4.2}{8.4} = \frac{1}{2},$$

$$\frac{PR}{ZX} = \frac{3\sqrt{3}}{6\sqrt{3}} = \frac{1}{2}$$

and $\frac{QR}{YX} = \frac{7}{14} = \frac{1}{2}$

Thus $\frac{QP}{ZY} = \frac{PR}{ZX} = \frac{QR}{YX}$

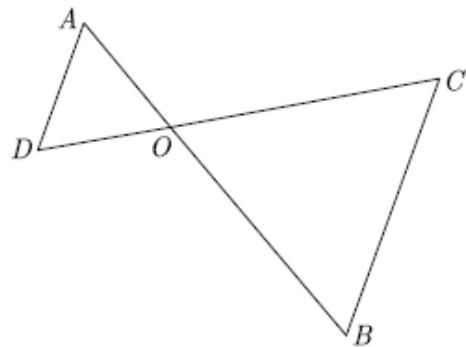
By SSS criterion we have

$$\Delta PQR \sim \Delta ZYX$$

Thus $\angle X = \angle R$
 $= 180^\circ - (60^\circ + 70^\circ) = 50^\circ$

Thus $\angle X = 50^\circ$

Solution 10.



We have $OA \times OB = OC \times OD$

$$\frac{OA}{OD} = \frac{OC}{OB}$$

Due to the vertically opposite angles,

$$\angle AOD = \angle COB$$

Thus by SAS similarity we have

$$\triangle AOD \sim \triangle COB$$

Thus $\angle A = \angle C$ and $\angle B = \angle D$, because of corresponding angles of similar triangles.