

Chapter-Surface area and volume

Q1.

Two cones have their heights in the ratio 1 : 3 and radii in the ratio 3 : 1. What is the ratio of their volumes?

Q2.

Volume and surface area of a solid hemisphere are numerically equal. What is the diameter of hemisphere?

Q3.

The volume of a right circular cylinder with its height equal to the radius is $25 \frac{1}{7} \text{ cm}^3$. Find the height of the cylinder. (Use $\pi = 22/7$)

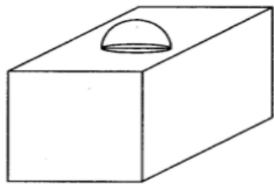
Q4.

A solid wooden toy is in the form of a hemisphere surmounted by a cone of same radius. The radius of hemisphere is 3.5 cm and the total wood used in making of toy is $166 \times 5/6 \text{ cm}^3$
Find the height of the toy. Also, find the cost of painting the hemispherical part of the toy at the rate of 10 rupees per cm^2

Q5.

From a solid right circular cylinder of height **14 cm** and base radius **6 cm**, a right circular Cone of same height and same base radius is removed. Find the volume of the remaining solid

Q6.


From a solid right circular cylinder of height 2.4 cm and radius 0.7 cm, a right circular cone of same height and same radius is cut out. Find the total surface area of the remaining solid

Q7.

A metallic solid sphere of radius 10.5 cm is melted and recasted into smaller solid cones, each of radius 3.5 cm and height 3 cm. How many cones will be made?

Q8.

In Figure, a decorative block, made up of two solids a cube and a hemisphere. The base of the block is a cube of side 6 cm and the hemisphere fixed on the top has a diameter of 3.5 cm. Find the total surface area of the block.(use $\pi=22/7$)

Q9.

The sum of the radius of base and height of a solid right circular cylinder is 37 cm. If the total surface area of the solid cylinder is 1628 sq. cm, find the volume of the cylinder, (use $\pi=22/7$)

Q10.

A toy is in the form of a cone of base radius 3.5 cm mounted on a hemisphere of base diameter 7 cm. If the total height of the toy is 15.5 cm, find the total surface area of the toy(use $\pi =22/7$)

Solution 1.

Solution : We have, $\frac{h_1}{h_2} = \frac{1}{3}$ and $\frac{r_1}{r_2} = \frac{3}{1}$

Now, Ratio of volumes = $\frac{V_1}{V_2}$

$$= \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2}$$

$$= \left(\frac{r_1}{r_2}\right)^2 \left(\frac{h_1}{h_2}\right)$$

$$= \left(\frac{3}{1}\right)^2 \times \left(\frac{1}{3}\right)$$

$$= 9 \times \frac{1}{3} = \frac{3}{1}$$

∴ The ratio of their volumes is 3 : 1. **Ans.**

Solution 2.

Let radius of hemisphere be r units

Volume of hemisphere = S.A. of hemisphere

$$\frac{2}{3}\pi r^3 = 3\pi r^2$$

$$\Rightarrow r = \frac{9}{2} \text{ or diameter} = 9 \text{ units}$$

Solution 3.

Given :

Height of cylinder = Radius of cylinder

$$\Rightarrow h = r$$

$$\text{And, Volume of cylinder} = 25 \frac{1}{7} \text{ cm}^3 = \frac{176}{7} \text{ cm}^3$$

 We know, Volume of cylinder = $\pi r^2 h$

$$= \pi h^3 \quad [\because h = r]$$

$$\Rightarrow \frac{176}{7} = \frac{22}{7} h^3$$

$$\Rightarrow h^3 = 8$$

$$\Rightarrow h = 2.$$

 Hence, the height of the cylinder is 2 cm. **Ans.**

Solution 4.

Hemisphere: Radius of hemisphere, $r = 3.5 \text{ cm}$
Cone: Radius of cone, $r = 3.5 \text{ cm}$ and let height of cone be ' h '. Then,

Volume of toy = Volume of cone + Volume of hemisphere

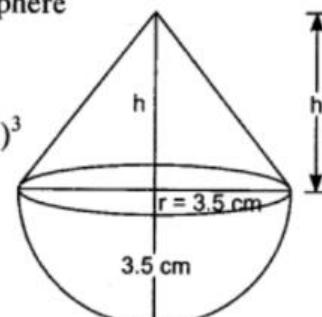
$$166 \frac{5}{6} = \frac{1}{3} \pi r^2 h + \frac{2}{3} \pi r^3$$

$$\Rightarrow 166 \frac{5}{6} = \frac{1}{3} \times \frac{22}{7} \times (3.5)^2 h + \frac{2}{3} \times \frac{22}{7} \times (3.5)^3$$

$$\Rightarrow \frac{1001}{6} = \frac{1}{3} \times \frac{22}{7} \times (3.5)^2 (h + 2 \times 3.5)$$

$$\Rightarrow \frac{1001}{6} = \frac{22 \times 3.5 \times 3.5}{3 \times 7} (h + 7)$$

$$\Rightarrow (h + 7) = \frac{1001 \times 3 \times 7}{22 \times 3.5 \times 3.5 \times 6} = 13 \Rightarrow h = 13 - 7 = 6 \text{ cm}$$


 ∴ Height of cone, $h = 6 \text{ cm}$

 ∴ Height of toy = $h + r = 6 + 3.5 = 9.5 \text{ cm}$

 Curved surface area of hemisphere = $2\pi r^2$

$$= 2 \times \frac{22}{7} \times (3.5)^2 = 77 \text{ cm}^2$$

 Cost of painting hemispherical part of toy = ₹ 10 per cm^2

 ∴ Total cost of painting hemispherical portion of toy = ₹ $(10 \times 77) = ₹ 770$.

Solution 5.

Given : Height of cylinder (h) = 14 cm

And, Base radius of cylinder (r) = 6 cm

Radius and height of right circular cone is same as that of the cylinder.

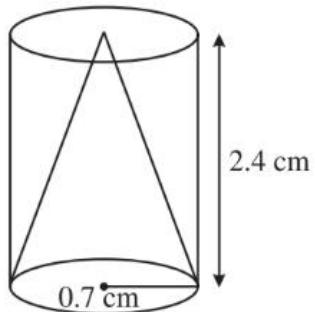
\therefore Height of cone = 14 cm

and radius of cone = 6 cm

Now, Volume of remaining solid

$$= \text{Volume of cylinder} - \text{Volume of cone}$$

$$= \pi r^2 h - \frac{1}{3} \pi r^2 h$$


$$= \frac{2}{3} \pi r^2 h$$

$$= \frac{2}{3} \times \frac{22}{7} \times 6^2 \times 14$$

$$= 1056 \text{ cm}^3$$

Ans.

$$= 2.5 \text{ cm}$$

Total surface area of the remaining solid

$$= \text{CSA of cylinder} + \text{CSA of cone} \\ + \text{Area of top}$$

$$= 2\pi rh + \pi rl + \pi r^2$$

$$= \pi r [2h + l + r]$$

$$= \frac{22}{7} \times 0.7 [2 \times 2.4 + 2.5 + 0.7]$$

$$= 2.2 [4.8 + 2.5 + 0.7]$$

$$= 2.2 \times 8 = 17.6 \text{ cm}^2$$

Solution 7.

Volume of metal in cones = Volume of solid sphere

Let n = number of cones

$n \times$ volume of each cone = volume of solid sphere

$$n = \frac{\text{Volume of sphere}}{\text{Volume of cone}}$$

$$\begin{aligned}
 &= \frac{\frac{4}{3}\pi r_{sp}^3}{\frac{1}{3}\pi r_{cone}^2 h} \\
 &= \frac{4 \times 10.5 \times 10.5 \times 10.5}{3.5 \times 3.5 \times 3} \\
 &= \frac{4 \times 105 \times 105 \times 105 \times 10}{35 \times 35 \times 3 \times 10 \times 10 \times 10} \\
 &= \frac{4 \times 3 \times 105}{10} = 126
 \end{aligned}$$

So, 126 cones will be made.

Solution 8.

Side of the cube = 6 cm

Total surface area of cube = $6 \times (\text{side})^2 = 6 \times (6)^2 = 216 \text{ cm}^2$

Area covered on the face of cube by circular part of hemisphere = $\pi r^2 = \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} \text{ cm}^2$

Curved surface area of hemisphere = $2 \times \pi \times r^2 = 2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} \text{ cm}^2$

So, Total surface area of the block = Surface area of cube - Area of circular face of hemisphere + Curved surface area of hemisphere

$$\begin{aligned}
 &= 216 - \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} + 2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} \\
 &= 216 + \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} = 216 + 9.625 = 225.625 \text{ cm}^2
 \end{aligned}$$

Solution 9.

 Here $r + h = 37$ [Given, where $r \rightarrow$ radius, $h \rightarrow$ height]

$$\text{Total surface area of cylinder} = 2\pi r(h + r) = 2\pi rh + 2\pi r^2$$

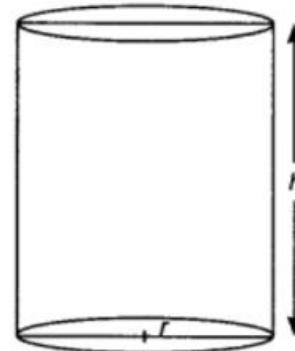
$$\Rightarrow 2\pi r(h + r) = 1628$$

$$\Rightarrow 2\pi r \times 37 = 1628$$

$$\Rightarrow 2 \times \frac{22}{7} \times r \times 37 = 1628$$

$$\Rightarrow r = \frac{1628 \times 7}{2 \times 22 \times 37} = 7 \text{ cm}$$

Given,


$$r + h = 37$$

$$7 + h = 37$$

$$\Rightarrow h = 37 - 7 = 30 \text{ cm}$$

 Hence, volume of cylinder = $\pi r^2 h$

$$= \frac{22}{7} \times 7 \times 7 \times 30 = 4620 \text{ cm}^3$$

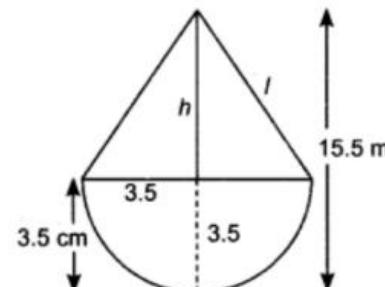
Solution 10.

Here, given that

$$h = 15.5 - 3.5 = 12 \text{ cm}$$

 Also, slant height of cone, $l = \sqrt{h^2 + r^2}$

$$= \sqrt{(12)^2 + (3.5)^2} \text{ cm}$$


$$= \sqrt{144 + 12.25} \text{ cm}$$

$$= \sqrt{156.25} \text{ cm} = 12.5 \text{ cm}$$

$$\therefore \text{Curved Surface Area of cone} = \pi r l = \frac{22}{7} \times 3.5 \times 12.5 \\ = 137.5 \text{ cm}^2$$

$$\therefore \text{Surface area of hemisphere} = 2\pi r^2 = 2 \times \frac{22}{7} \times (3.5)^2 = 77 \text{ cm}^2$$

$$\text{Hence, Total Surface Area of toy} = \text{Surface area of hemisphere} + \text{Curved Surface Area of cone} \\ = 77 + 137.5 = 214.5 \text{ cm}^2$$

