

Chapter-Quadratic Equations

Question bank

Q1.

i. If the roots of the quadratic equation $(c^2 - ab)x^2 - 2(a^2 - bc)x + b^2 - ac = 0$ in x are equal then show that either $a = 0$ or $a^3 + b^3 + c^3 = 3abc$

Q2.

If the roots of the quadratic equation

$(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0$ are equal. Then show that $a = b = c$.

Q3.

ii. If the equation $(1 + m^2)x^2 + 2mcx + (c^2 - a^2) = 0$ has equal roots, prove that $c^2 = a^2(1 + m^2)$

Q4.

If (-5) is a root of the quadratic equation $2x^2 + px + 15 = 0$ and the quadratic equation $p(x^2 + x) + k = 0$ has equal roots, then find the values of p and k .

Q5.

. Write all the values of p for which the quadratic equation $x^2 + px + 16 = 0$ has equal roots. Find the roots of the equation so obtained.

Q6.

1. Find x in terms of a, b and c :

$$\frac{a}{x-a} + \frac{b}{x-b} = \frac{2c}{x-c}, x \neq a, b, c$$

Q7.

. Solve for x : $\frac{x-1}{2x+1} + \frac{2x+1}{x-1} = 2$ where $x \neq -\frac{1}{2}, 1$

Q8.

2. If $ad \neq bc$, then prove that the equation $(a^2 + b^2)x^2 + 2(ac + bd)x + (c^2 + d^2) = 0$ has no real roots.

Q9.

Two water taps together can fill a tank in 6 hours. The tap of larger diameter takes 9 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.

Q10.

Prove that if a quadratic equation has rational coefficients and an irrational root of the form $p + \sqrt{q}$, then its other root must be $p - \sqrt{q}$.

Solutions

Solution 1.

We have $(c^2 - ab)x^2 - 2(a^2 - bc)x + b^2 - ac = 0$

Comparing with $Ax^2 + Bx + C = 0$ we get

$$A = (c^2 - ab), B = (a^2 - bc), C = (b^2 - ac)$$

If roots are equal, $B^2 - 4AC = 0$

$$[2(a^2 - bc)]^2 - 4(c^2 - ab)(b^2 - ac) = 0$$

$$4[a^4 + b^2c^2 - 2a^2bc] - 4(b^2c^2 - c^3a - ab^3 - a^2bc) = 0$$

$$4[a^4 + b^2c^2 - 2a^2bc - b^2c^2 + c^3a + ab^3 - a^2bc] = 0$$

$$4[a^4 + ac^3 + ab^3 - 3a^2bc] = 0$$

$$a(a^3 + c^3 + b^3 - 3abc) = 0$$

$$a = 0 \text{ or } a^3 + b^3 + c^3 = 3abc$$

Solution 2.

$$(x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) = 0$$

$$x^2 - ax - bx + ab +$$

$$+ x^2 - bx - cx + bc +$$

$$+ x^2 - cx - ax + ac = 0$$

$$3x^2 - 2ac - 2bx - 2cx + ab + bc + ca = 0$$

For equal roots $B^2 - 4AC = 0$

$$\{-2(a+b+c)\}^2 - 4 \times 3(ab + bc + ca) = 0$$

$$4(a+b+c)^2 - 12(ab + bc + ca) = 0$$

$$a^2 + b^2 + c^2 - 3(ab + bc + ca) = 0$$

$$a^2 + b^2 + c^2 + 2ab + 2bc + 2ac - 3ab - 3bc - 3ac = 0$$

$$a^2 + b^2 + c^2 - ab - ac - bc = 0$$

$$\frac{1}{2}[2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc] = 0$$

$$\frac{1}{2}[(a^2 + b^2 - 2ab) + (b^2 + c^2 - 2bc) + (c^2 + a^2 - 2ac)] = 0$$

$$\frac{1}{2}[(a-b)^2 + (b-c)^2 + (c-a)^2] = 0$$

$$\text{or, } (a-b)^2 + (b-c)^2 + (c-a)^2 = 0$$

If $a \neq b \neq c$

$$(a-b)^2 > 0, (b-c)^2 > 0, (c-a)^2 > 0$$

$$\text{If } (a-b)^2 = 0 \Rightarrow a = b$$

$$(a-c)^2 = 0 \Rightarrow b = c$$

$$(c-a)^2 = 0 \Rightarrow c = a$$

Thus $a = b = c$

Hence Proved

Solution 3.

We have $(1 + m^2)x^2 + 2mcx + (c^2 - a^2) = 0$

Comparing with $Ax^2 + Bx + C = 0$ we get

$$A = 1 + m^2, B = 2mc, C = (c^2 - a^2)$$

If roots are equal, $B^2 - 4AC = 0$

$$(2mc)^2 - 4(1 + m^2)(c^2 - a^2) = 0$$

$$4m^2 c^2 - 4(1 + m^2)(c^2 - a^2) = 0$$

$$m^2 c^2 - (c^2 - a^2 + m^2 c^2 - m^2 a^2) = 0$$

$$m^2 c^2 - c^2 + a^2 - m^2 c^2 + m^2 a^2 = 0$$

$$-c^2 + a^2 + m^2 a^2 = 0$$

$$, \quad c^2 = a^2(1 + m^2)$$

Hence Proved.

Solution 4.

We have $2x^2 + px - 15 = 0$

Since $x = -5$ is the root of above equation. It must satisfy it.

$$2(-5)^2 + p(-5) - 15 = 0$$

$$50 - 5p - 15 = 0$$

$$5p = 35 \Rightarrow p = 7$$

Now $p(x^2 + x) + k = 0$ has equal roots

or $7x^2 + 7x + k = 0$

Taking $b^2 - 4ac = 0$ we have

$$7^2 - 4 \times 7 \times k = 0$$

$$49 - 28k = 0$$

$$k = \frac{7}{4}$$

Hence $p = 7$ and $k = \frac{7}{4}$.

Solution 5.

We have $x^2 + px + 16 = 0$... (1)

If this equation has equal roots, then discriminant $b^2 - 4ac$ must be zero.

i.e., $b^2 - 4ac = 0$... (2)

Comparing the given equation with $ax^2 + bx + c = 0$
 we get $a = 1$, $b = p$ and $c = 16$

Substituting above in equation (2) we have

$$p^2 - 4 \times 1 \times 16 = 0$$

$$p^2 = 64 \Rightarrow p = \pm 8$$

When $p = 8$, from equation (1) we have

$$x^2 + 8x + 16 = 0$$

$$x^2 + 2 \times 4x + 4^2 = 0$$

$$(x + 4)^2 = 0 \Rightarrow x = -4, -4$$

Hence, roots are -4 and -4 .

When $p = -8$ from equation (1) we have

$$x^2 - 8x + 16 = 0$$

$$x^2 - 2 \times 4x + 4^2 = 0$$

$$(x - 4)^2 = 0 \Rightarrow x = 4, 4$$

Hence, the required roots are either $-4, -4$ or $4, 4$

Solution 6.

We have $\frac{a}{x-a} + \frac{b}{x-b} = \frac{2c}{x-c}$

$$\begin{aligned}
 a(x-b)(x-c) + b(x-a)(x-c) &= 2c(x-a)(x-b) \\
 ax^2 - abx - acx + abc + bx^2 - bax - bcx + abc & \\
 = 2cx^2 - 2cxb - 2cxa + 2abc & \\
 ax^2 + bx^2 - 2cx^2 - abx - acx - bax - bcx + 2cbx + 2acx & \\
 = 0 &
 \end{aligned}$$

$$x^2(a + b - 2c) - 2abx + acx + bcx = 0$$

$$x^2(a + b - 2c) + x(-2ab + ac + bc) = 0$$

$$\text{Thus } x = -\left(\frac{ac + bc - 2ab}{a + b - 2c}\right)$$

Solution 7.

We have $\frac{x-1}{2x+1} + \frac{2x+1}{x-1} = 2$

Let $\frac{x-1}{2x+1}$ be y so $\frac{2x+1}{x-1} = \frac{1}{y}$

Substituting this value we obtain

$$y + \frac{1}{y} = 2$$

$$y^2 + 1 = 2y$$

$$y^2 - 2y + 1 = 0$$

$$(y - 1)^2 = 0$$

$$y = 1$$

Substituting $y = \frac{x-1}{2x+1}$ we have

$$\frac{x-1}{2x+1} = 1 \text{ or } x-1 = 2x+1$$

or $x = -2$

Solution 8.

We have $(a^2 + b^2)x^2 + 2(ac + bd)x + (c^2 + d^2) = 0$

Comparing with $Ax^2 + Bx + C = 0$ we get

$$A = (a^2 + b^2), B = 2(ac + bd) \text{ and } C = c^2 + d^2$$

For no real roots, $D = B^2 - 4AC < 0$

$$D = B^2 - 4AC$$

$$\begin{aligned} &= [2(ac + bd)]^2 - 4(a^2 + b^2)(c^2 + d^2) \\ &= 4[a^2c^2 + 2abcd + b^2d^2] - 4[a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2] \\ &= 4[a^2c^2 + 2abcd + b^2d^2 - a^2c^2 - a^2d^2 - b^2c^2 - b^2d^2] \\ &= -4[a^2d^2 + b^2c^2 - 2abcd] \\ &= -4(ad - bc)^2 \end{aligned}$$

Since $ad \neq bc$, therefore $D \neq 0$ and always negative.

Hence the equation has no real roots.

Solution 9.

Let x hours be the time taken by smaller one water tap. $\therefore (x - 9)$ hours be the time taken by larger one water tap.

According to question,

$$\begin{aligned} \frac{1}{x} + \frac{1}{x-9} &= \frac{1}{6} \Rightarrow \frac{x-9+x}{x(x-9)} = \frac{1}{6} \\ \Rightarrow 6(2x-9) &= x(x-9) \\ \Rightarrow 12x-54 &= x^2-9x \\ \Rightarrow x^2-21x+54 &= 0 \\ \Rightarrow x^2-18x-3x+54 &= 0 \Rightarrow x(x-18)-3(x-18)=0 \\ \Rightarrow (x-3)(x-18) &= 0 \\ \Rightarrow x &= 3 \text{ or } x = 18 \end{aligned}$$

\therefore Tap of smaller diameter takes 18 hours and that of larger diameter takes $(18 - 9) = 9$ hrs.

Solution 10.

We need to prove that if a quadratic equation has rational coefficients and an irrational root of the form $p + \sqrt{q}$, then its other root must be $p - \sqrt{q}$.

Let the given quadratic equation be:

$$ax^2 + bx + c = 0$$

where a, b, c are rational numbers.

Step 1: Define the Roots

Given that one root is $p + \sqrt{q}$, let the other root be r .

Since the sum and product of the roots of a quadratic equation are given by:

$$\text{Sum of roots} = -\frac{b}{a}$$

$$\text{Product of roots} = \frac{c}{a}$$

Step 2: Check for Rational Coefficients

Since the coefficients of the quadratic equation are rational, the sum and product of the roots must also be rational.

If the second root r were not $p - \sqrt{q}$, the sum:

$$(p + \sqrt{q}) + r$$

would contain \sqrt{q} , making it irrational.

For the sum to be rational, the irrational term \sqrt{q} must cancel out. This is only possible if $r = p - \sqrt{q}$, as then:

$$(p + \sqrt{q}) + (p - \sqrt{q}) = 2p$$

which is rational.

Similarly, the product:

$$(p + \sqrt{q})(p - \sqrt{q}) = p^2 - q$$

is also rational, as required.