

Chapter- Polynomials

Introduction to Polynomials

A polynomial is an algebraic expression consisting of variables and coefficients, involving only addition, subtraction, multiplication, and non-negative integer exponents.

General form: $a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n$

Example 1:

Identify the polynomial: $3x^2 - 2x + 5$

Solution: This is a quadratic polynomial (degree 2)

Example 2:

Is $2/x + 3$ a polynomial?

Solution: No, because it involves division by a variable

Zeros of a Polynomial

A zero of a polynomial $p(x)$ is a value of x for which $p(x) = 0$.

Example 1:

Find the zeros of $p(x) = x^2 - 1$

Solution:

$$x^2 - 1 = 0$$

$$(x+1)(x-1) = 0$$

$$x = 1 \text{ or } x = -1$$

Example 2:

Find the zero of $p(x) = 2x + 3$

Solution:

$$2x + 3 = 0$$

$$2x = -3$$

$$x = -3/2$$

Relationship between Zeros and Coefficients of Quadratic Polynomials

For a quadratic polynomial $ax^2 + bx + c$:

- Sum of zeros = $-b/a$
- Product of zeros = c/a

Example 1:

If the zeros of $x^2 - 5x + 6$ are α and β , find $\alpha + \beta$ and $\alpha\beta$.

Solution:

$$a = 1, b = -5, c = 6$$

$$\alpha + \beta = -b/a = -(-5)/1 = 5$$

$$\alpha\beta = c/a = 6/1 = 6$$

Example 2:

The sum of zeros of a quadratic polynomial is 7 and their product is 12. Find the polynomial.

Solution:

Let the polynomial be $x^2 + bx + c$

Sum of zeros = $-b/1 = 7$, so $b = -7$

Product of zeros = $c/1 = 12$, so $c = 12$

The polynomial is $x^2 - 7x + 12$