

Chapter-Arithmetic Progressions

1. Introduction to Arithmetic Progression (AP)

An Arithmetic Progression is a sequence where the difference between any two consecutive terms is constant.

Example 1:

Identify if the sequence 2, 5, 8, 11, 14 is an AP.

Solution: Yes, it's an AP. The common difference is 3.

Example 2:

Is 3, 9, 27, 81 an AP?

Solution: No, it's not an AP. The difference between consecutive terms is not constant.

2. nth Term of an AP

The nth term of an AP is given by the formula: $a_n = a + (n - 1)d$

Where a is the first term, n is the position of the term, and d is the common difference.

Example 1:

Find the 10th term of the AP: 3, 7, 11, 15, ...

Solution:

$$a = 3, d = 4$$

$$a_{10} = 3 + (10 - 1)4 = 3 + 36 = 39$$

Example 2:

In an AP, if the 3rd term is 12 and the 7th term is 24, find the 10th term.

Solution:

$$a_3 = a + 2d = 12$$

$$a_7 = a + 6d = 24$$

Subtracting: $4d = 12$

$$d = 3$$

$$a + 2d = 12$$

$$a = 6$$

$$\text{Now, } a_{10} = 6 + (10 - 1)3 = 33$$

3. Sum of n Terms of an AP

The sum of n terms of an AP is given by:

$$S_n = n/2[2a + (n - 1)d] \text{ or } S_n = n/2(a + l), \text{ where } l \text{ is the last term.}$$

Example 1:

Find the sum of the first 20 terms of the AP: 2, 5, 8, 11, ...

Solution:

$$a = 2, d = 3, n = 20$$

$$S_{20} = 20/2[2(2) + (20 - 1)3]$$

$$= 10[4 + 57]$$

$$= 10 \times 61 = 610$$

Example 2:

The sum of first n terms of an AP is 430. If the first term is 10 and the last term is 38, find n.

Solution:

$$S_n = n/2(a + l)$$

$$430 = n/2(10 + 38)$$

$$430 = 24n$$

$$n = 430/24 \approx 17.92$$

Since n must be a whole number, n = 18

