

1. How does the nature of bonding (ionic vs covalent) influence the physical properties and natural occurrence of metals and non-metals?

Metals form ionic bonds due to their tendency to lose electrons, resulting in properties like high melting points, electrical conductivity, and malleability. They usually occur in nature as ionic compounds such as oxides or sulfides. Non-metals, which gain or share electrons, often form covalent bonds. These covalent compounds have lower melting points and are poor conductors. Due to their lower reactivity with oxygen or other elements, non-metals like sulfur and carbon often occur in a relatively pure form. The bond type influences both physical properties and natural occurrence of these elements.

2. How does the type of bond in metal oxides affect their behavior in water and their role in corrosion or rusting?

Metal oxides are typically ionic in nature and exhibit basic or amphoteric behavior in water. For example, sodium oxide forms sodium hydroxide, a strong base. Amphoteric oxides like aluminum oxide react with both acids and bases. During rusting, iron forms $Fe_2O_3 \cdot xH_2O$, where the iron oxide is hydrated and results from a redox process involving water and oxygen. The ionic nature of metal oxides makes them reactive with environmental moisture, thus contributing to corrosion processes. Their solubility and reactivity in water are governed by the strength of the ionic bonds formed.

3. Correlate the position of a metal in the reactivity series with its method of extraction and the type of compound it forms.

Metals high in the reactivity series (e.g., Na, K, Ca) form stable ionic compounds and are extracted using electrolytic reduction. Moderately reactive metals like Fe and Zn form oxides or carbonates and are extracted by reduction using carbon or CO. Less reactive metals like Au and Ag occur free or as sulfides, requiring minimal extraction efforts. The higher the metal is in the series, the more stable its ionic bond and compound, thus requiring more energy-intensive extraction techniques like electrolysis due to stronger attraction between ions.

4. Compare the formation of polar covalent and ionic compounds based on electronegativity and give real-life examples.

Ionic bonds form between elements with large electronegativity differences (e.g., NaCl, where Na loses and Cl gains an electron). Polar covalent bonds occur when electronegativity difference is moderate, leading to unequal sharing of electrons (e.g., HCl). In HCl, hydrogen and chlorine share electrons, but chlorine pulls more strongly, creating partial charges. Ionic compounds tend to form crystalline solids with high melting points, while polar covalent compounds may be liquids or gases. Thus, bond type and properties depend on how strongly each atom attracts bonding electrons.

5. How does the nature of ore and gangue affect metallurgy steps like concentration and reduction?

The ore's nature (oxide, sulfide, carbonate) and its associated gangue (impurities) determine the suitable concentration method —gravity separation, froth flotation, or magnetic separation. For oxide ores, simple roasting or reduction with carbon suffices. Sulfide ores may require roasting to convert them to oxides first. Gangue removal ensures efficient and cost -effective reduction. For instance, in bauxite ($\text{Al}_2\text{O}_3 \cdot 2\text{H}_2\text{O}$), impurities like silica are removed via Bayer's process before electrolytic extraction. The ore-gangue combination greatly impacts the energy and chemical requirements for effective metallurgy.

6. Why do high-reactivity metals require electrolytic reduction, and how is this used in refining too?

Highly reactive metals like sodium, potassium, and aluminum form very stable ionic compounds. Their oxides and chlorides cannot be reduced using carbon or other chemical reducing agents. Electrolytic reduction breaks these stable bonds using electric current. For example, Al is extracted from Al_2O_3 using electrolysis in molten cryolite. This process is energy-intensive but necessary. Similarly, in electrolytic refining, impure metal is made the anode, and pure metal deposits at the cathode, allowing for high-purity recovery of metals like copper and silver through controlled ionic transfer.

7. How does alloying improve resistance to corrosion and relate it to bonding and physical properties?

Alloying alters the crystal structure and electron configuration of metals, making them less reactive and more resistant to corrosion. For example, stainless steel (iron alloyed with

chromium and nickel) resists rusting better than pure iron because chromium forms a protective oxide layer. Alloying may disrupt the uniform metallic bonding and electron sea, reducing reactivity and improving strength and hardness. The presence of different atoms affects bond lengths and bonding strength, enhancing properties like resistance to chemical attack, tensile strength, and thermal stability.

8. How do physical properties of metals and non-metals relate to bonding type and extraction method from minerals or ores?

Metals possess malleability, ductility, and conductivity due to metallic bonding—delocalized electrons allow easy deformation and current flow. Their extraction often requires strong reduction techniques due to stable ionic bonding in ores. Non-metals, held together by covalent bonds, are brittle and poor conductors, and their occurrence in nature can be in native form or as simple compounds, needing minimal extraction. For example, sulfur is non-metallic and occurs naturally, whereas metals like aluminum require complex electrolytic processes due to their strong ionic oxide bonds.

9. How does the chemical nature of non-metal and metal oxides help in refining and separation during metallurgy?

Metal oxides are typically basic or amphoteric, while non-metal oxides are acidic. This contrast is used in refining steps like roasting, where sulfide ores are converted into oxides that can be reduced. In purification, acidic or basic fluxes are added to remove gangue. For instance, in iron extraction, limestone (CaCO_3) acts as a basic flux to remove acidic silica as slag. Amphoteric oxides like Al_2O_3 require selective reagents for separation. Thus, understanding oxide behavior aids in choosing reagents for refining and separation during metallurgy.

10. Explain how rusting is an electrochemical process and how this principle is reversed in electrolytic refining.

Rusting involves the electrochemical oxidation of iron in presence of water and oxygen. Iron loses electrons (anodic reaction), forming Fe^{2+} , which reacts with oxygen and water to produce rust (hydrated iron oxide). The electron transfer forms a local electrochemical cell. In electrolytic refining, the process is reversed. The impure metal anode loses electrons, releasing metal ions into solution, which gain electrons at the cathode to form pure metal.

Thus, while rusting deteriorates metals through uncontrolled redox reactions, electrolytic refining harnesses controlled redox to purify them.

