CLASS 10TH MID TERM

POLYNOMIALS

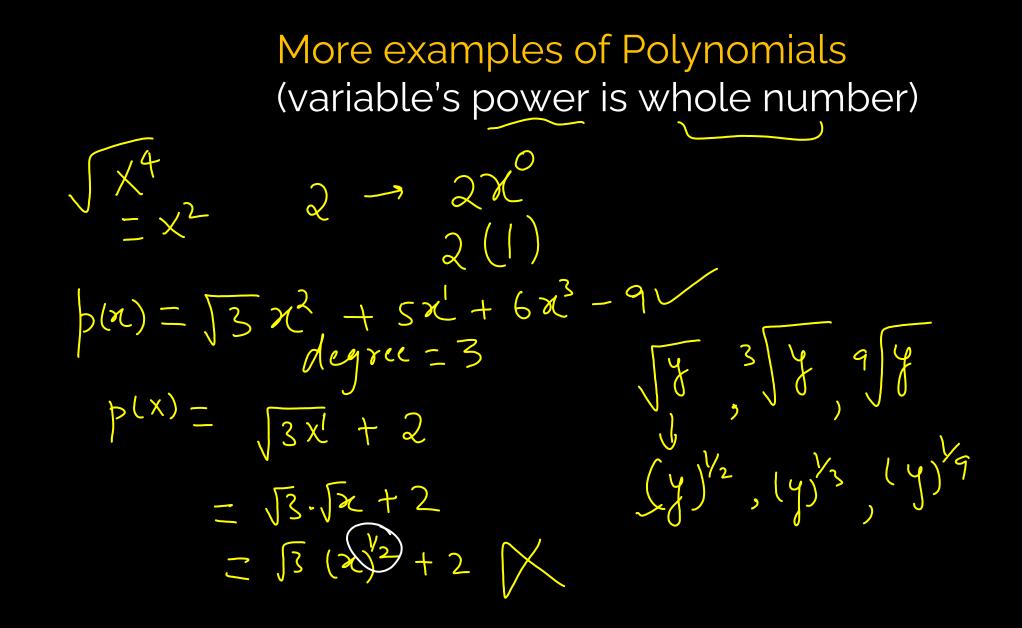
Definition

Polynomials :- Algebraic Expressions consisting constants & variables Ex: 2, 2x' + 2, $2x^2 + 2x' + 2$ etc.

Types of Polynomials:

On basis of degree $\rightarrow 2\chi^2 + 2\chi + 2$ (2) $\rightarrow degree$

On the basis of number of terms

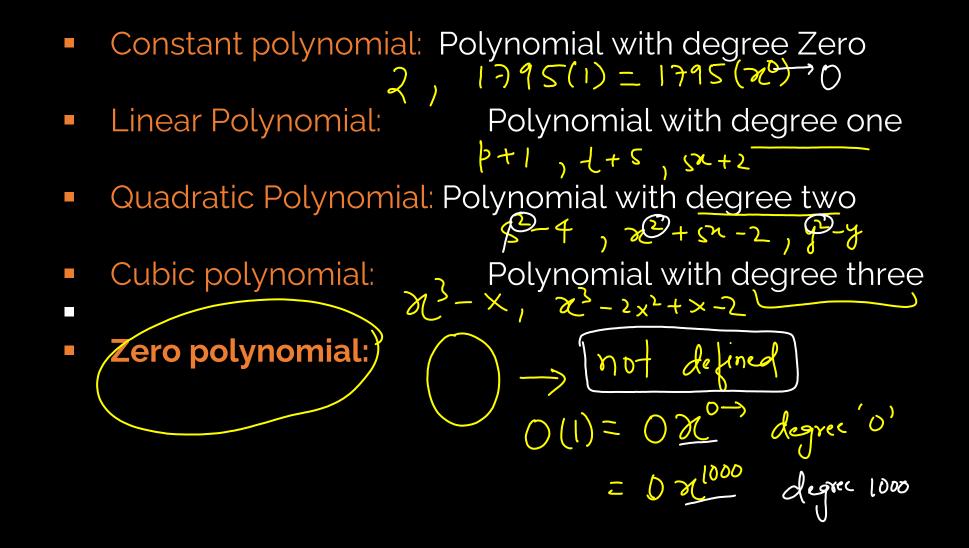


Classification on the basis of number of terms

- Monomial: A Polynomial containing one term $ex:2,2x,5y^2$
- Binomial: A polynomial containing two terms ex: x + 2, $2x^3 + x^5$
- Trinomial: A polynomial containing three terms

ex:
$$x - x^2 + 8$$
, $-x^5 + x + x^4$

Classification on the basis of degree



What is the value of a polynomial?

$$P(x) = 5x + 2$$

$$(x = 0) \rightarrow \phi(0) = 5(0) + 2$$

$$= 2$$

$$\phi(2) = 5(2) + 2$$

$$= 10 + 2 = 12$$

$$P(x) = x^{2} - x + 2$$

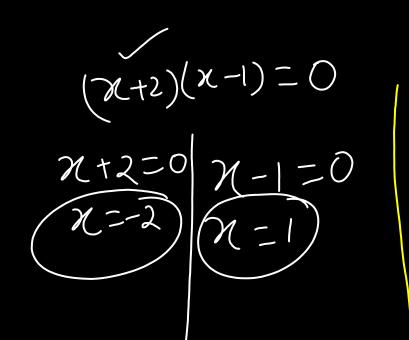
$$\phi(0) = 0^{2} - 0 + 2 = 2$$

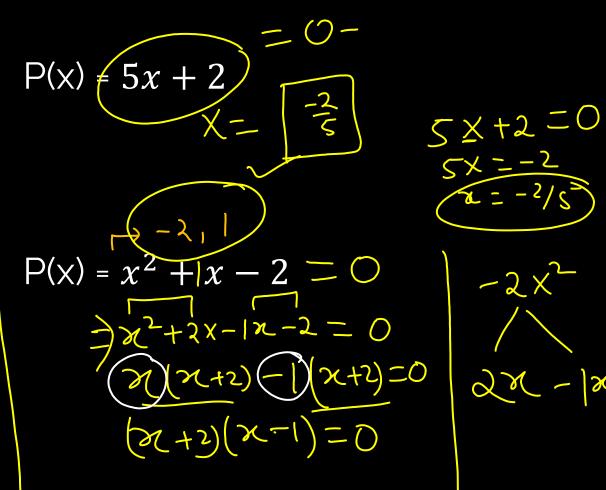
$$p(2) = 2^{2} - 2 + 2$$

$$= 4 - 2 + 2$$

$$= 4$$

What are the zeroes of a polynomial?





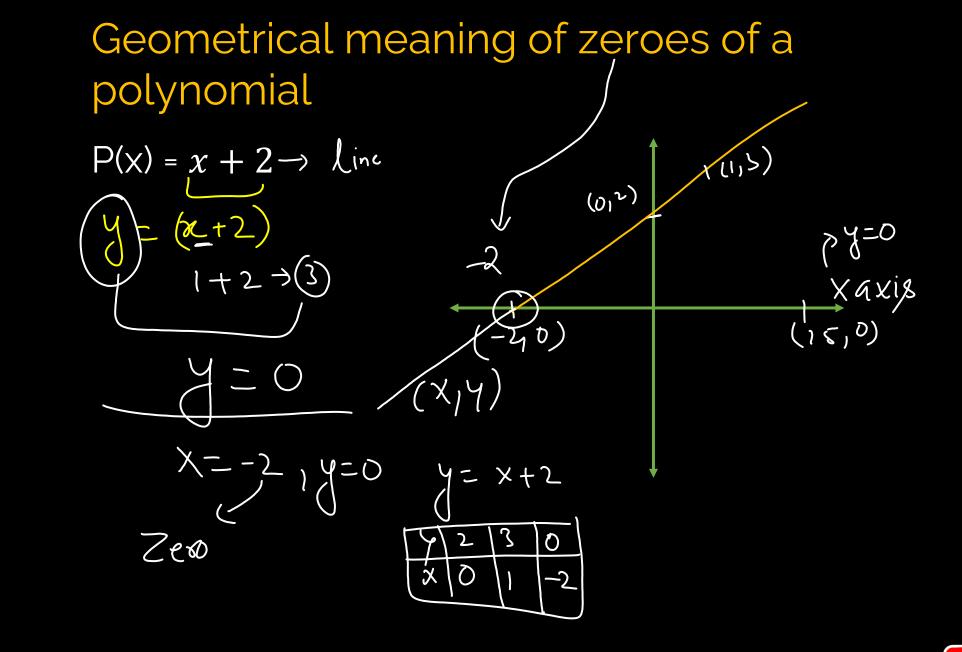
Important points to remember about zeroes of a polynomial?

1. Number of zeroes of a polynomial cannot exceed the degree of polynomial. $\chi^3 - \chi + \chi^2 + \chi^2$

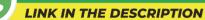
2. Constant polynomial does not have a zero.

$$f(x) = 2x^{\circ}$$

= 2(2)
= 2(1) = 2



JOIN OUR WHATSAPP CHANNEL FOR THE PDF



Geometrical meaning of zeroes of a polynomial

$$P(x) = x^{2} + x - 2$$

$$= (x + 2)(x - 1) \equiv 0$$

$$x \equiv -2$$

$$P(0) \equiv 0 + 0 - 2$$

$$= (-2)$$

$$Y \equiv x^{2} + x - 2$$

$$X \equiv -2$$

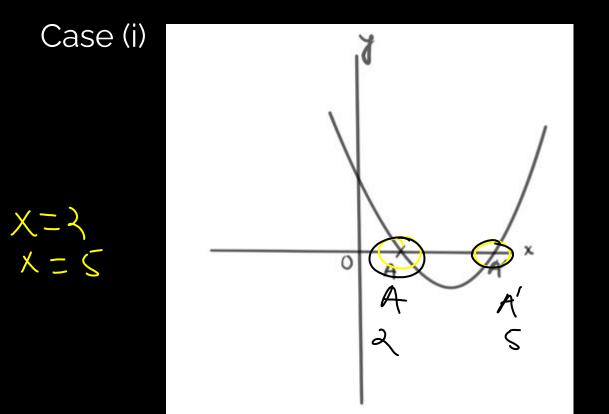
$$(-2,0)$$

$$x \equiv 1$$

$$(0, -2)$$

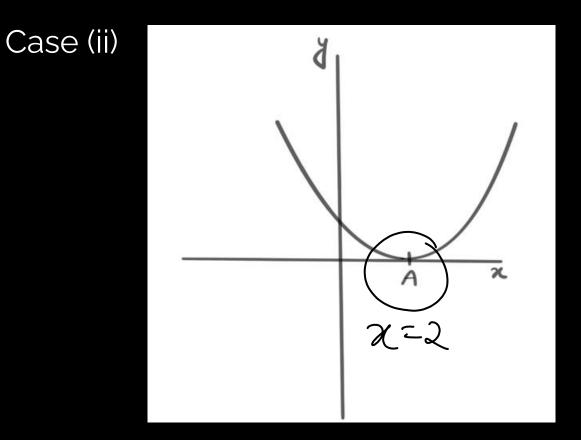
LINK IN THE DESCRIPTION

Number of zeroes of a polynomial (from graph)



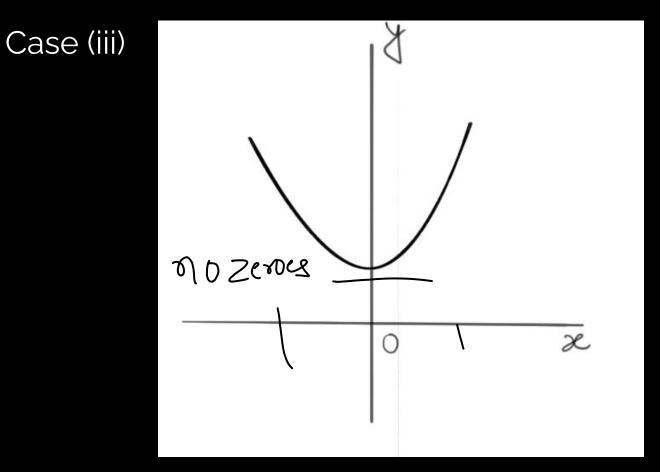
SUBSCRIBE TO DEEKSHA KARNATAKA

Number of zeroes of a polynomial (from graph)

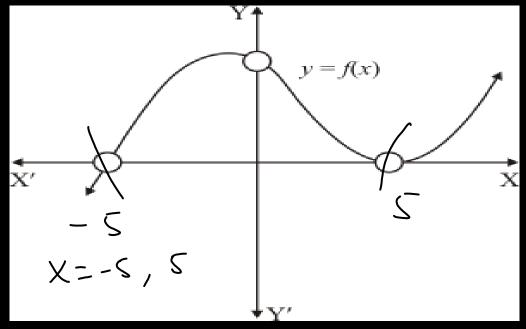


SUBSCRIBE TO DEEKSHA KARNATAKA

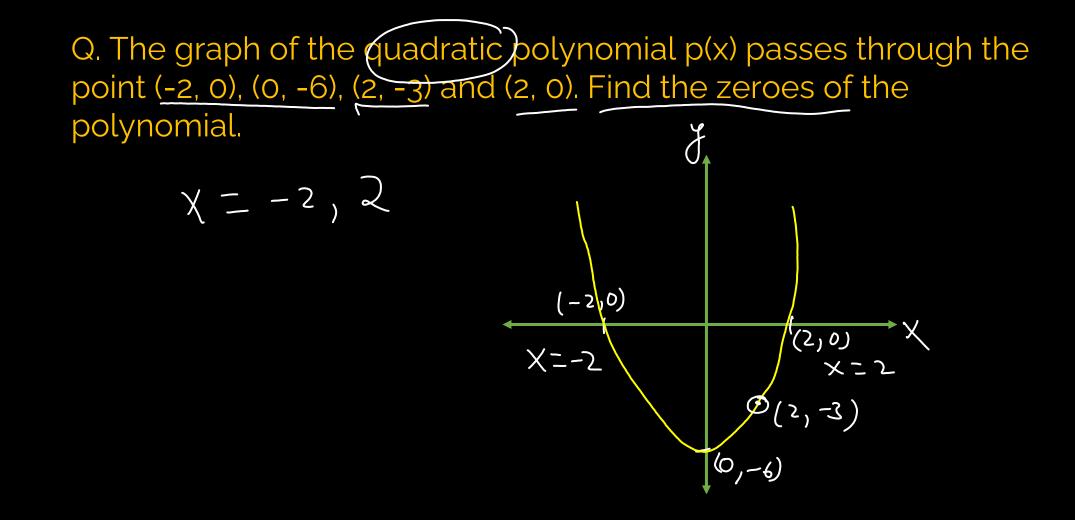
Number of zeroes of a polynomial (from graph)



Q. A graph of a polynomial f(x) is shown in the figure find the number of zeroes.



SUBSCRIBE TO DEEKSHA KARNATAKA



Q. If one of the zero of quadratic polynomial $(k - 1)x^2 + kx + 1$ is (-3,) the find k. $f(X) = (k-1)x^{2} + kx \neq 1$ $f(-3) = (k-1)(-3)^{2} + k(-3) + 1$ f(-3) = O $O = (K-1)^9 - 3K + 1$ 0 = 9K - 9 - 3K + 1() –

Q. If the zeroes of quadratic polynomial
$$x^2 + (a + 1)x + b$$
 are $2 \& -3$ then find $a \& b \to 0, -6$
 $f(x) = x^2 + (a + 1)x + b$
 $f(z) = 2^2 + (a + 1)z + b$
 $f(z) = 2^2 + (a + 1)z + b$
 $f(z) = 2 + (a + 1)z + b$
 $f(-3) = (-3)^2 + (a + 1)x + b$
 $f(-3) = (-3)^2 + (a + 1)x + b$
 $f(-3) = (-3)^2 + (a + 1)x + b$
 $f(-3) = (-3)^2 + (a + 1)x + b$
 $f(-3) = (-3)^2 + (a + 1)x + b$
 $f(-3) = (-3)^2 + (a + 1)x + b$
 $f(-3) = (-3)^2 + (a + 1)x + b$
 $f(-3) = (-3)^2 + (a + 1)x + b$
 $f(-3) = (-3)^2 + (-3) + b$
 $f(-3) = (-3)^2 + (-3)^2 + (-3)^2 + b$
 $f(-3) = (-3)^2 +$

LINK IN THE DESCRIPTION

Standard Constant constant constant constant constant constant term
$$ax^2 + bx + c$$
, $a \neq 0$
 $ax^2 + bx + c$, $a \neq 0$
 $0 + bx + c = bx + c$
 $a :- Coeff. of x^2$
 $b :- Coeff. of x$

Examples: $5x^{2} + 13x - 17$ $3x^{2} + x \rightarrow 3x^{2} + 1x + 0$ a=3, b=1, c=0 $-12x^{2} + 2 - 12x^{2} + 0x + 2$ (a) (b) (c)

Relation between zeroes & coefficients of a quadratic polynomial

For a quadratic polynomial $ax^2 + bx + c$ Let the zeroes of the polynomial be $\alpha & \beta$

Sum of zeroes =
$$\alpha + \beta = \left(-\frac{b}{a}\right)$$

Product of zeroes = $\alpha \cdot \beta = \frac{c}{a}$

Q. Find the zeroes of the polynomial
$$x^2 + \frac{1}{6}x - 2$$
, and
verify the relation between the coefficients and the
zeroes of the polynomial.
 $z = -2$
 $x^2 + \frac{1}{6}x - 2 = \frac{6}{6}(x^2 + \frac{1}{6}x - 2)$
 $x^2 + \frac{1}{6}x - 2 = \frac{6}{6}(x^2 + \frac{1}{6}x - 2)$
 $= \frac{1}{6}\left[6n^2 + \frac{1}{6}\left[\frac{1}{6}n^2 - \frac{1}{6}\right] - \frac{12}{6}x^{6x^2}$
 $= \frac{1}{6}\left[6n^2 + \frac{1}{6}\left[\frac{1}{6}n^2 - \frac{1}{6}\right] - \frac{12}{6}x^{6x^2}$
 $= \frac{1}{6}\left[6n^2 + \frac{1}{6}n^2 - \frac{1}{6}\right]$
 $= \frac{1}{6}\left[6n^2 + \frac{1}{6}n^2 - \frac{1}{6}x^{6x^2}\right]$
 $= \frac{1}{6}\left[6n^2 + \frac{1}{6}n^2 - \frac{1}{6}x^{6x^2}\right]$
 $= \frac{1}{6}\left[6n^2 + \frac{1}{6}n^2 - \frac{1}{6}x^{6x^2}\right]$
 $= \frac{1}{6}\left[\frac{3x(2x+3) - 4(2x+3)}{9x-6x^2}\right]$
 $= \frac{1}{6}\left[\frac{3x(2x+3) - 4(2x+3)}{9x-6x^2}\right]$
 $= \frac{1}{6}\left[(x+3)(3x-4)\right]$

LINK IN THE DESCRIPTION

$$\frac{1}{6} (2x+3)(3x-4) = 0$$

$$\frac{1}{6} (2x+3)(3x-4) = 0$$

$$2x+3=0 = 3x = -3/2 - 3x$$

$$3x-4=0 = 3x = -3/2 - 3x$$

$$\frac{1}{3} - 3x = -3/2 - 3x$$

Q. Find the quadratic polynomial for which sum and product of zeroes are – 4 & 3 respectively.

$$Sum \{ pxod. \\ (p) = 3 \\ (s) = -4 \\ (p) = 3 \\ p(x) = x^2 - px + p \\ = x^2 - (-4)x + 3 \\ = x^2 + qx + 3 \\ \end{cases}$$

Q. Find the guadratic polynomial having zeroes 3 2 $\sqrt{\frac{3}{2}} \& \begin{array}{ccc}
0 & -6 \\
Sum (S) = \sqrt{\frac{3}{2}} + (-\sqrt{\frac{3}{2}}) = 0 \\
Sum (S) = \sqrt{\frac{3}{2}} + (-\sqrt{\frac{3}{2}}) = -\frac{3}{2} \\
prod. (P) = (\sqrt{\frac{3}{2}}) (-\sqrt{\frac{3}{2}}) = -\frac{3}{2}
\end{array}$ $\begin{array}{c} \chi^{2} - 5l + p \\ \chi^{2} - 0 - \frac{3}{2} = \left(\frac{\chi^{2} - \frac{3}{2}}{2} \right) \end{array}$

Q. The zeroes of the quadratic polynomial $x^{2} + kx + k, K > 0, \lambda, \alpha, \beta$ \sqrt{a} cannot both be positive b. cannot both be negative c. are always equal d. are always unequal $Sum = \alpha + \beta = -\frac{b}{a} = (-\frac{k}{T}) \rightarrow -ve$ prod. = d.p = $\leq_a = \underset{k}{\leftarrow} \rightarrow + vc$ (J-) (-(+,-) $\bigvee \hat{\gamma} \rightarrow (+) (- -)$ (+ +)

Q. If the sum of the zeros of the quadratic polynomial $f(t) = kt^2 + 2t + 3k$ is equal to their product, find the value of k. $(\alpha + \beta) = -\alpha + \beta$ $(\alpha + \beta) = -\alpha + \beta$

d

Q. A quadratic polynomial whose zeroes are
reciprocal of the zeroes of quadratic polynomial
$$ax^{2} + bx + c, a \neq 0 \& c \neq 0$$
 are given by______
 $(A) k(cx^{2} + ax + b)$
(C) $k(cx^{2} - bx + a)$
(C) $k(cx^{2} - bx + a)$
(D) $k(cx^{2} + bx - a)$
 $\int (x) \rightarrow \frac{1}{x}, \frac{1}{\beta}$
 $ax^{2} + bx + (-) a + \beta = -b$
 $a + \beta = -b$

Sum of Zerves of U. OP

$$f(x) = \frac{1}{\alpha} + \frac{1}{\beta}$$

$$S = \frac{\beta t \alpha}{\alpha \beta} = \frac{\alpha + \beta}{x \beta} = \frac{-b/\alpha}{c/\alpha}$$

$$F(x) = \frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{-b}{c/\alpha} = \frac{1}{c}$$

$$= \frac{1}{\alpha \beta} = \frac{1}{c/\alpha} = \frac{\alpha}{c}$$

$$f(x) = \alpha^{2} - S(x) + \beta$$

$$= \alpha^{2} - (\frac{-b}{c})x + \frac{\alpha}{c}$$

$$= \frac{1}{c} \left[-\frac{b}{c} + \frac{b}{c} + \frac{a}{c} \right]$$

$$f(x) = \frac{1}{c} \left[(x^{2} + bx + \alpha) \right]$$

Q. If
$$\alpha \& \beta$$
 are the zeroes of the quadratic polynomial
 $f(x) = x^2 - 1$, find a quadratic polynomial whose
zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.
 $f(x) = x^2 - 1$
 $= x^2 - 1 = 0$
 $x^2 - 1^2 = (x-1)(x+1)$
 $= x^2 - 1 = 0$
 $x^2 - 1^2 = (x-1)(x+1)$
 $= x^2 - 1 = 0$
 $x^2 - 1^2 = (x-1)(x+1)$
 $= x^2 - 1 = 0$
 $x^2 - 1^2 = (x-1)(x+1)$
 $= x^2 - 1 = 0$
 $x^2 - 1^2 = (x-1)(x+1)$
 $= x^2 - 1 = 0$
 $x^2 - 1^2 = (x-1)(x+1)$
 $= x^2 - 1 = 0$
 $x^2 - 1^2 = (x-1)(x+1)$
 $x^2 - (x-1)(x+1)$
 $x^2 - (x-1)(x+1)$
 $x^2 - (x-1)(x+1)$

Q. If
$$\alpha \& \beta$$
 are the zeroes of a quadratic polynomial
such that $\alpha + \beta = 24 \& \alpha - \beta = 8$, find a quadratic
polynomial whose zeroes are $\alpha \& \beta$.
 $\chi^2 - \leq \chi + \beta^2 + 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 + 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 + 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 + 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 + 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 + 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2 + b^2 - 2\alpha\beta$
 $(\alpha + b)^2 = \alpha^2$

JOIN OUR WHATSAPP CHANNEL FOR THE PDF

SUBSCRIBE TO DEEKSHA KARNATAKA

Homework questions

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes & the coefficient.

$$p(s) = 4s^2 - 4s + 1$$

If $\alpha \& \beta$ are the zeroes of the quadratic polynomial $p(y) = 5y^2 - 7y + 1$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$.

S. If a & b are the zeroes of the quadratic polynomial $f(x) = x^2 - 2x + 3$, find a polynomial whose roots are a + 2, b + 2.

IN THE DESCRIPTION

