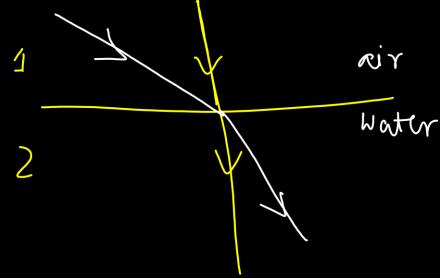

CLASS TO H MID TERM

LIGHT REFRACTION ONE SHOT

Your Roadmap to Success

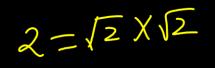

Stay on track with a structured schedule that covers every essential topic you need for mid-term success. Each class is designed to reinforce core concepts and provide ample practice to ensure you're fully prepared. Follow the timetable, access class PDFs, and watch video lessons—all at your own pace. Your journey to acing the exams starts here!

 13th Sept 2024 		
Торіс	PDF	Link
Real Numbers		
Life processes		

Download the class PDF now ! link in the description

Refraction of light

MCQ 1: Light ray changes its direction as it enters another medium
a) only for oblique incidence
b) only for normal incidence
c) any type of incidence
d) It does not change its direction.


Snell's Law

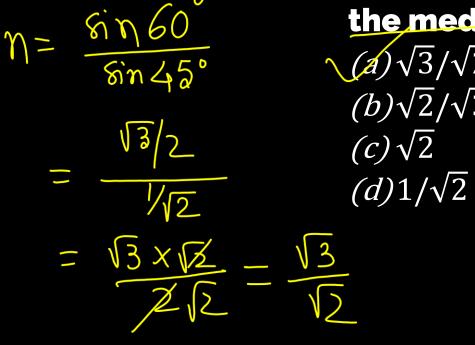
MCQ 2 : If *i* is the angle of incidence and *r* is the angle of refraction, then which of the following is correct? (n=refractive index of the second medium with respect to the first.)

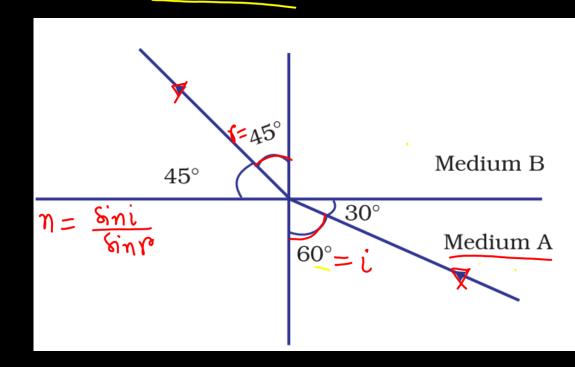
b)
$$\sin i = \sin r$$

c) $n = \frac{\sin i}{\sin r}$
d) $n = \frac{\sin r}{\sin i}$

a) i = r

 $\frac{\sin i}{\sin v} = \text{Gastant}$ = P.i(n)

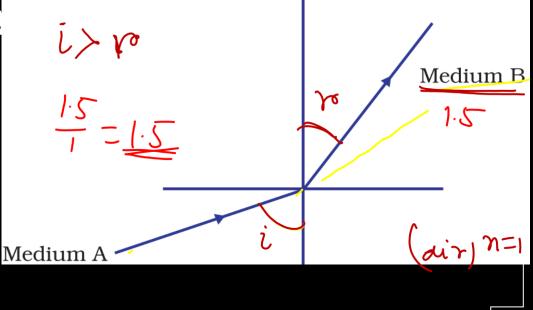



 $(a)\sqrt{3}/\sqrt{2}$

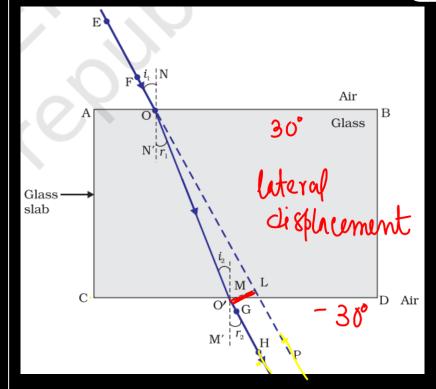
 $(b)\sqrt{2}/\sqrt{3}$

Snell's Law

MCQ 3. Figure shows a ray of light as it travels from medium A to medium B. Refractive index of the medium B relative to medium A is


(\mathbf{P})

Snell's Law


MCQ 4 A light ray enters from medium A to medium B as shown in Figure 10.2. The refractive index of medium B relative to A will be

(a) greater than unity

(b) less than unity(c) equal to unity(d) zero

Refraction Through a Glass Slab

SA 1: Why does a light ray incident on a rectangular glass slab immersed in any medium emerges parallel to itself? Explain using a diagram.

Answer:

The extent of bending of the ray of light at the opposite parallel faces AB (air-glass interface) and CD (glass-air interface) of the rectangular glass slab is equal and opposite. This is why the ray emerges parallel to the incident ray. However, the light ray is shifted sideward slightly. This is known as Lateral displacement.

Refractive Index

SA 2: How is the refractive index of a medium related to the speed of light? Obtain an expression for refractive index of a medium with respect to another in terms of speed of light in these two media?

Answer:

The relationship between refractive index of a medium and speed of light is given by:

$$n_m = rac{Speed \ of \ light \ in \ air}{Speed \ of \ light \ in \ the \ medium} = rac{c}{v}$$

 n_{12}

()

Refractive Index

Obtain an expression for refractive index of a medium with respect to another in terms of speed of light in these two media?

 $= \frac{n_{21}}{n_1} = \frac{c}{n_1} = \frac{c}{v_2} = v_2$ $= \frac{Speed of light in second medium}{Speed of light in second medium}$

 v_2

 v_1

Speed of

Speed of light in first medium

Refractive Index

SA 3: Refractive index of diamond with respect to glass is 1.6 and absolute refractive index of glass is 1.5. Find out the absolute refractive index of diamond. $h_d = 1.6 \times 1.5$.6

Refractive Index

MCQ 5: You are given water, mustard oil, glycerine and kerosene. In which of these media a ray of light incident obliquely at same angle woul<u>d bend the</u>

most? (a) Kerosene (b) Water (c) Mustard oil (d) Glycerine

$$\mu_{k}=1.44$$

 $\mu_{w}=1.33$
 $\mu_{m}=1.47$
 $\mu_{g}=1.473$

Homework

MCQ: At What distance from a concave mirror should an object be placed to get an image of the same size as the object? (1)

- a) Beyond the centre of curvature of the mirror
- b) At the principal focus of the mirror
- \checkmark At the centre of curvature of the mirror $(R, \gamma \zeta)$
 - d) Between the focus and pole of the mirror

MCQ: At What distance from a concave mirror should an object be placed to get an inverted and magnified image? (1)
a) Beyond the centre of curvature of the mirror
b) At the principal focus of the mirror
c) At the centre of curvature of the mirror
d) Between the focus and centre of curvature of the mirror

Homework

SA 1: A concave mirror produces three times magnified (enlarged) real image of an object placed at 10 cm in front of it. Where is the image located. (2)

St State laws of reflection of light. (2) $M = -\frac{1}{4} = +\frac{1}{710} = -3 \Rightarrow \frac{1}{70} = -3$ $0 = 30 \text{ cm} \text{ che} = \frac{1}{70} = -30 \text{ cm}$ Same side as the object. (Leftside)

Homework

1=-15 m

f = -10 m

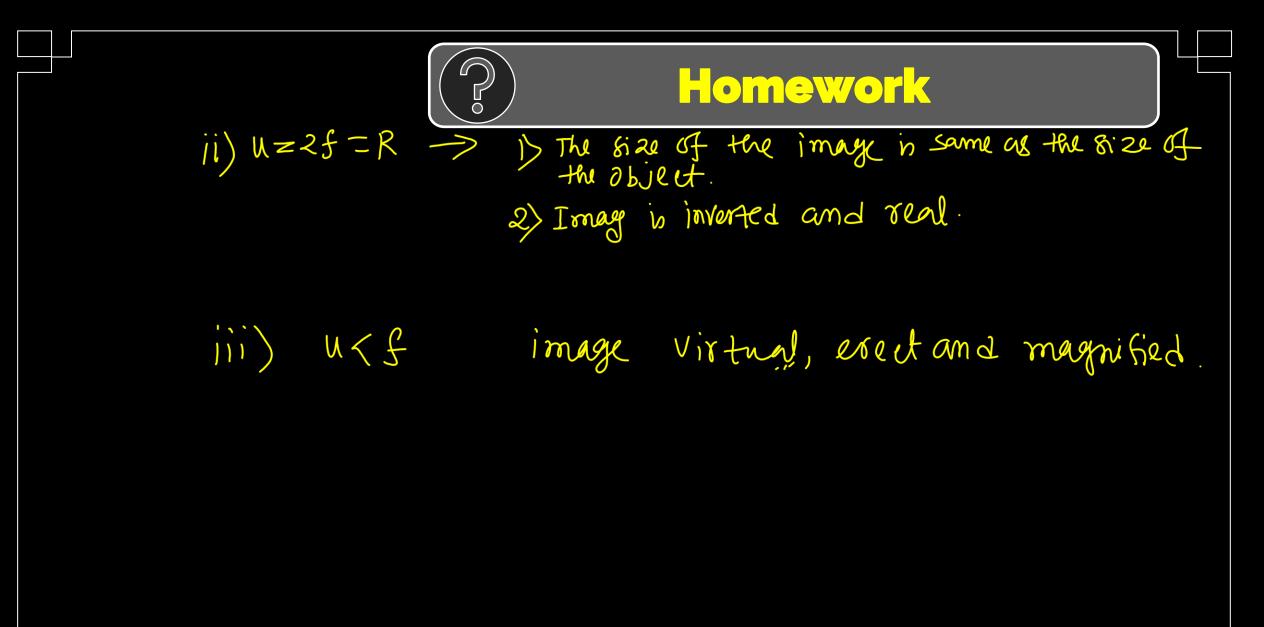
「·+ · · · · ·

30

LA 1: An object of height 5.0 cm is placed at 15 cm in front of a concave mirror of focal length 10 cm. At what distance from the mirror should a screen be placed, so that a focussed image is obtained on it ? Find the nature and the height of the image, (5)

= <u>a</u> (m)

Invested


A

Homework

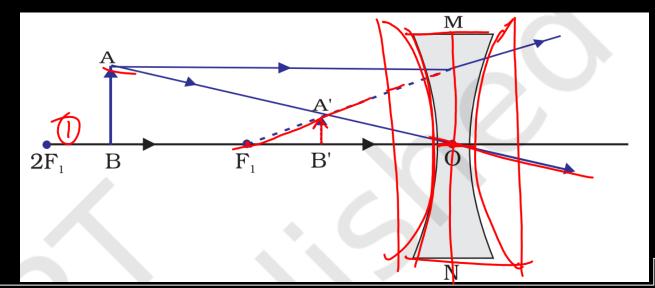
LA 2: Study the data given below showing the focal length of three concave mirrors A, B and C and the respective distances of objects placed in front of the

m	Case	Mirror	Focal Length (cm)	Object Distance (cm)
	1	Α	20	45
	→ 2	В	15	30
	3	C	30	20

i) In which cases, the mirror will form a diminished image of the object? Justify your answer. (1)
ii) List two properties of image formed in case 2. (2)
iii) What is the nature and size of the image formed by mirror c? Draw ray diagram to justify your answer. (2)

Your Roadmap to Success

Stay on track with a structured schedule that covers every essential topic you need for mid-term success. Each class is designed to reinforce core concepts and provide ample practice to ensure you're fully prepared. Follow the timetable, access class PDFs, and watch video lessons—all at your own pace. Your journey to acing the exams starts here!


 13th Sept 2024 		
Торіс	PDF	Link
Real Numbers		
Life processes		

Download the class PDF now ! link in the description

Refraction by Spherical Lenses

SA 4: A Lens forms a virtual, erect and diminished image of an object. Identify the type of this lens. Draw a ray diagram to show the image formation in this case?

Answer: Concave Lens

Image formation by a Concave Lens

Position of the object	Position of the image	Size of the image	Nature of the image
At Infinity	At the focus F, behind the lens	Highly diminished, Point sized	Virtual and erect
Between infinity and the pole P of the lens	Between P and F, Behind the lens ぐH	Diminished	Virtual and erect

Image formation by a Convex Lens

LA 1: A convex lens of focal length 20 cm can produce a magnified virtual as well as real image. Is this a correct statement? If yes, where shall the object be placed in each case for obtaining these images?

Answer:

A convex lens can produce a magnified real image when it is placed at a distance between f and 2f and if the distance is less than the focal length, it produces a magnified virtual image. Thus, the statement is correct.

Image formation by a Convex Lens

LA 1: A convex lens of focal length 20 cm can produce a magnified virtual as well as real image. Is this a correct statement? If yes, where shall the object be placed in each case for obtaining these images? Answer: Magnified virtual image: Between 0 to 20 cm

Magnified real image: Between 20 cm to 40 cm

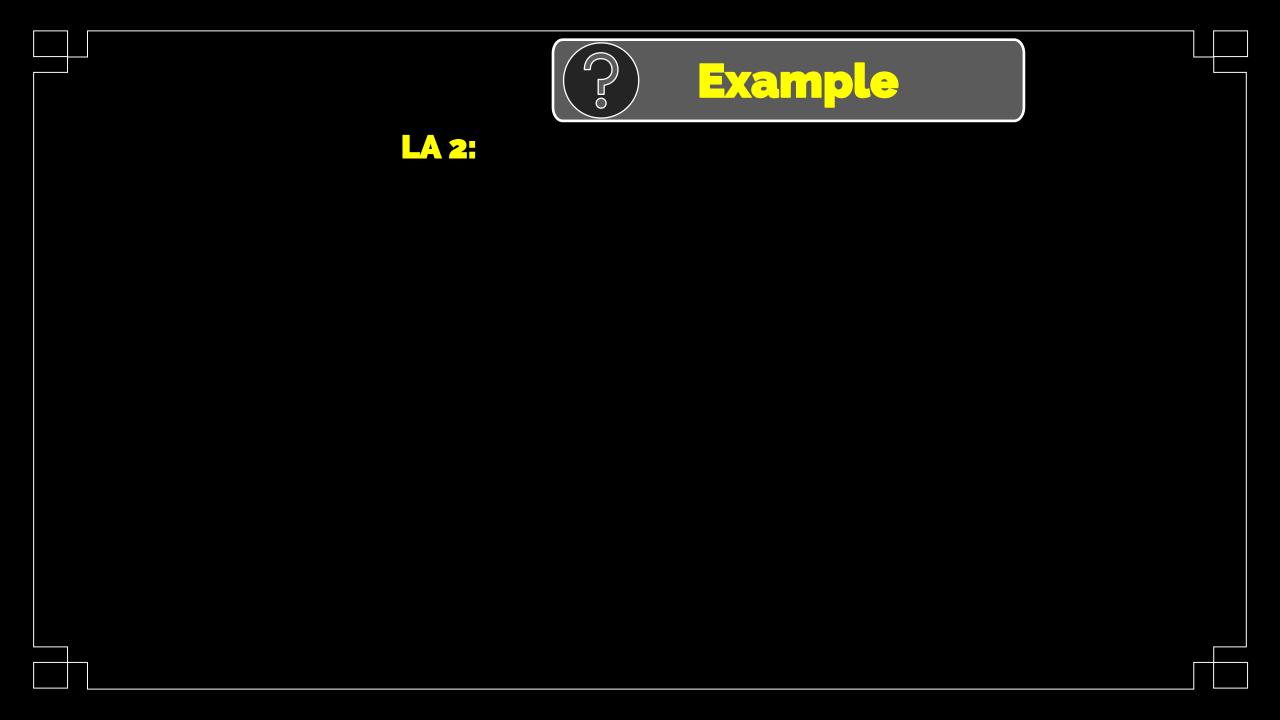
Convex Lens: Summery

Position of the object	Position of the image	Size of the image	Nature of the image
At Infinity	At the focus F	Highly diminished, Point sized	Real and Inverted
Beyond 2F	Between F and 2F	Diminished	Real and Inverted
At 2F	At 2F	Same size	Real and Inverted
Between 2F and F	Beyond 2F	Enlarged	Real and Inverted
At F	At Infinity	Highly enlarged	Real and Inverted
Between P and F	Behind the lens	Enlarged	Virtual and erect

MCQ 6:

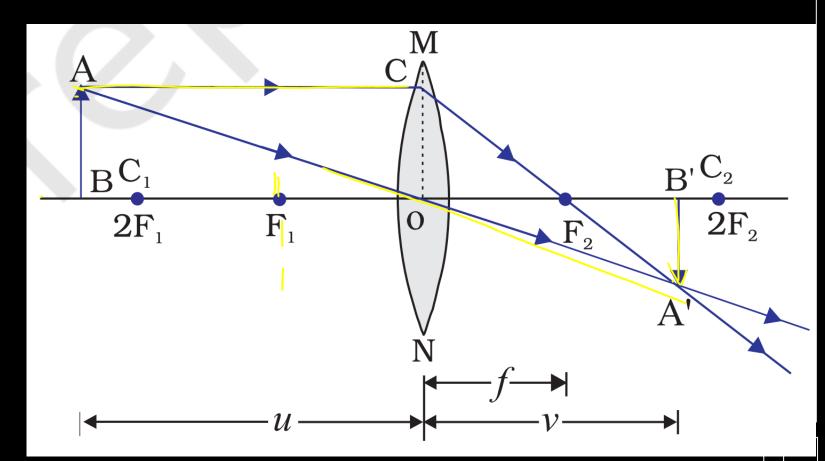
At what distance from a convex lens should an object be placed to get an image of the same size as that of the object on a screen ?

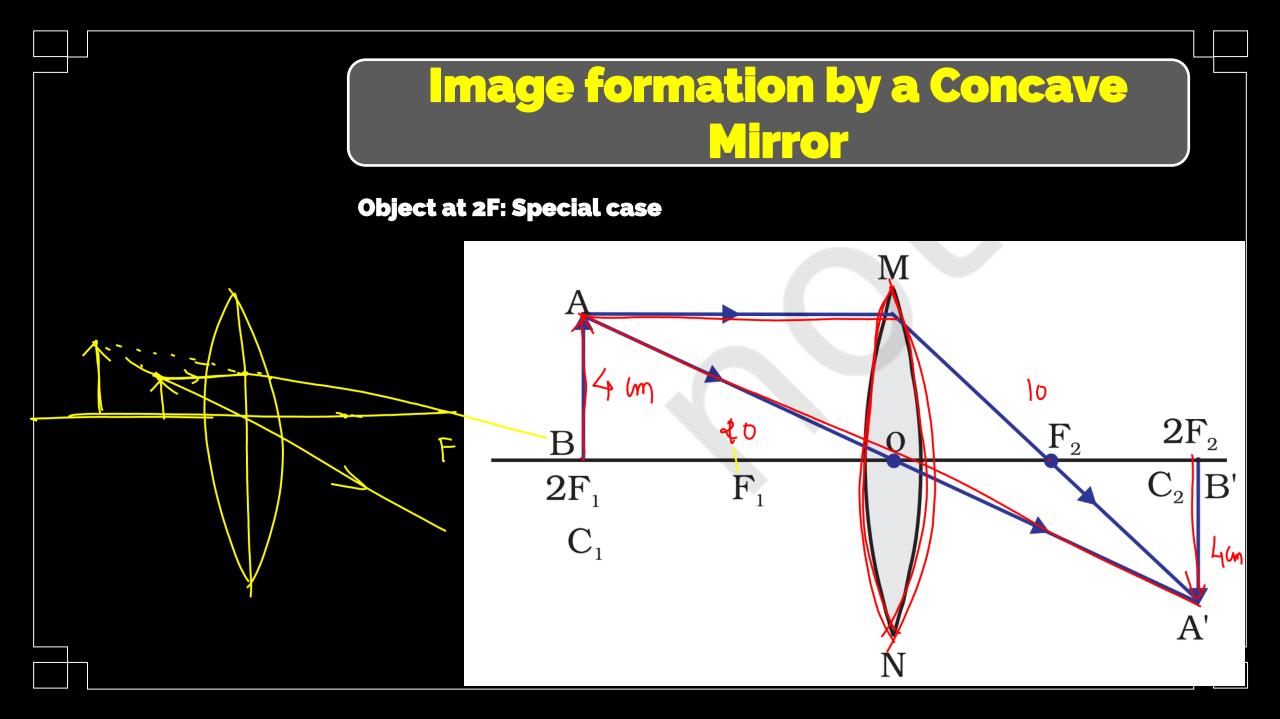
- (a) Beyond twice the focal length of the lens.
- (b) At the principal focus of the lens.
- (c) At twice the focal length of the lens. (2f)
- (d) Between the optical centre of the lens and its principal focus.


LA 2:

- (i) Draw a ray diagram to show the path of the refracted ray in each of the following cases :
 A ray of light incident on a concave lens
 (1) parallel to its principal axis, and
 - (2) is directed towards its principal focus.
- (ii) A 4 cm tall object is placed perpendicular to the principal axis of convex lens of focal length 24 cm. The distance of object from the lens is 16 cm. Find the position and size of image formed.

h = 4 cm


Example


$$\begin{bmatrix}
2 & -\frac{1}{4} = \frac{1}{5} \\
\frac{1}{9} - \frac{1}{-16} = \frac{1}{84} \\
\frac{1}{9} = \frac{1}{74} - \frac{1}{16} = \frac{2-3}{48} = -\frac{1}{48} \\
\frac{1}{9} = \frac{1}{74} - \frac{1}{16} = \frac{2-3}{48} = -\frac{1}{48} \\
\frac{1}{9} = -\frac{48}{48} \text{ cm} \frac{1}{1} \\
\frac{1}{9} = -\frac{48}{74} \text{ cm} \frac{1}{1} \\
\frac{1}{9} = +\frac{1}{74} = +\frac{1}{748} = 2$$

Object Beyond 2F: Common case

Lens Formula

 $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$

This formula is valid in all situations for all spherical mirrors for all positions of the object.

You must use the New Cartesian Sign Convention while substituting numerical values for u, v, f, and R in the mirror formula for solving problems.

Magnification

MCQ 6: An object is kept at a distance u in front of a spherical lens. An image is formed at distance v from the mirror. What is the magnification of image?

a) $+\frac{v}{u}$ b) -uvc) $-\frac{u}{v}$ $m = \frac{Height of the image (h')}{Height of the object(h)}$ $m = +\frac{v}{u}$

d) It depends on the type of the lens

Example LA 3: A concave lens has focal length of 15 cm. At

what distance should the object from the lens be placed so that it forms an image at 10 cm from the lens? Also, find the magnification produced by the

f = -15 cm.

 $=\frac{1}{3}=0.33$

10

V =−10 m

Answer:

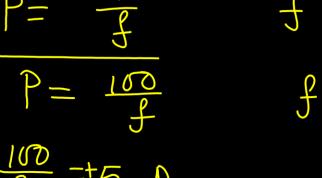
19

 $= -10^{-10}$

 $M = \frac{1}{11} = 1$

lens.

30


0

LA 4: How are power and focal length of a lens related? You are provided with two lenses of fo<u>cal</u> length 20 cm and 40 cm respectively. Which lens will you use to obtain more convergent light

Answer:

f -> m

 \mathcal{M} .

Homework

MCQ 1: Absolute refractive index of glass and water is 2 3 and 3 4 respectively. If the speed of light in glass is 2 108 m/s, the speed of light in water is : $(A) \frac{9}{4} \times 10^8$ m/s $(B) \frac{5}{2} \times 10^8$ m/s (C) $\frac{7}{3} \times 10^8$ m/s (D) $\frac{16}{9} \times 10^8$ m/s

Homework

MCQ 2: How will the image formed by a convex lens be affected, if the upper half of the lens is wrapped with a black paper ?

- (A) The size of the image formed will be one-half of the size of the image due to complete lens.
- (B) The image of upper half of the object will not be formed.
- (C) The brightness of the image will reduce.
- (D) The lower half of the inverted image will not be formed.

\bigcirc

Homework

SA 1: Sudha finds out that the sharp image of the window pane of her science laboratory is formed at a distance of 15 cm from the lens. She now tries to focus the building visible to her outside the window instead of the window pane without disturbing the lens. In which direction will she move the screen to obtain a sharp image of the building? What is the approximate focal length of this lens? **SA 2:** How are power and focal length of a lens related? You are provided with two lenses of focal length 20 cm and 40 cm respectively. Which lens will you use to obtain more convergent light?

P

Homework

LA 1: The image of a candle flame formed by a lens is obtained on a screen placed on the other side of the lens. If the image is three times the size of the flame and the distance between lens and image is 80 cm, at what distance should the candle be placed from the lens? What is the nature of the image at a distance of 80 cm and the lens?

Homework

LA 2: A student focussed the image of a candle flame on a white screen using a convex lens. He noted down the position of the candle screen and the lens as under Position of candle = 12.0 cm Position of convex lens = 50.0 cm Position of the screen = 88.0 cm (i) What is the focal length of the convex lens? (ii) Where will the image be formed if he shifts the candle towards the lens at a position of 31.0 cm? (iii) What will be the nature of the image formed if he further shifts the candle towards the lens? (iv) Draw a ray diagram to show the formation of the image in case (iii) as said above.

Deeksha Scholastic Aptitude Test

Confused About Your Career Choices After 10th?

Take dSAT today

- 60-minutes concept-based lecture and career \checkmark orientation
- Aptitude Test \checkmark
- One-on-one counselling
- GET UPTO 90% SCHOLARSHIP Competency assessment for Competitive Exams \checkmark including JEE/NEET/KCET

ame *	
mail *	
hone Number *	

Block Vour Soat Now

Is the student in 10th Grade? *

Š

BLOCK MY SEAT

By submitting my data I agree to be contacted. Terms & Conditions and Privacy Policy

For More Information Visit-Website, Link in Deserior

Your Roadmap to Success

Stay on track with a structured schedule that covers every essential topic you need for mid-term success. Each class is designed to reinforce core concepts and provide ample practice to ensure you're fully prepared. Follow the timetable, access class PDFs, and watch video lessons—all at your own pace. Your journey to acing the exams starts here!

 13th Sept 2024 		
Торіс	PDF	Link
Real Numbers		
Life processes		

Download the class PDF now ! link in the description

SHARE

DEEKSHA KARNATAKA