## ১Deekshå

## ABUYAS KCET 2024



| Subject | Topic |  |
| :---: | :---: | :---: |
| $\mathrm{C}+\mathrm{M}+\mathrm{P}$ | Complete Syllabus |  |

1. This paper consists of 180 questions with 3 parts of Chemistry, Mathematics and Physics

- Chemistry: (Q. No. 1 to 60) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- Mathematics: (Q. No. 61 to 120) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- Physics: (Q. No. 121 to 180) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.

2. The OMR sheet for $\mathbf{2 0 0}$ questions is to be used
3. Use of calculators and log tables is prohibited
4. Darken the appropriate bubble using a pen in the OMR sheet provided to you. Once entered, the answer cannot be changed. Any corrections or modifications will automatically draw a penalty of 1 mark
5. No clarification will be entertained during the examination. Doubts in the paper can be reported to the coordinator after the exam
6. If the details in the OMR Sheet are not filled, If the OMR sheet is mutilated, torn, white Ink used, the circles filled and scratched, then the OMR sheet will not be graded

All the best!!

## Useful Data

At. Wt.:
$N=14 ; O=16 ; H=1 ; S=32 ; C l=35.5 ; M n=55 ; N a=23 ; C=12 ; A g=108 ; K=39 ; F e=56 ; P b=207$
Physical Constants:
$h=6.626 \times 10^{-34} \mathrm{Js}, \mathrm{N}_{\mathrm{a}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}, \mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

## Chemistry

## Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark. <br> $60 \times 1=60$

1. Most common oxidation states of Ce (Cerium) are $\qquad$ .
(a) $+3,+4$
(b) $+2,+3$
(c) $+2,+4$
(d) $+3,+5$
2. Which one of these is not known?
(a) $\mathrm{CuI}_{2}$
(b) $\mathrm{CuBr}_{2}$
(c) $\mathrm{CuCl}_{2}$
(d) $\mathrm{CuF}_{2}$
3. In which of the following coordination compounds, the central metal atom obeys the EAN rule?
(a) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(b) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(c) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
(d) All
4. Which of the following can participate in linkage isomerism?
(a) $\mathrm{NO}_{2}^{-}$
(b) $\mathrm{H}_{2} \stackrel{\ddot{\mathrm{~N}} \mathrm{CH}_{2} \mathrm{CH}_{2} \stackrel{\ddot{\mathrm{~N}}}{\mathrm{H}} \mathrm{H}_{2}}{ }$
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) $: \mathrm{NH}_{3}$
5. The structure of $\mathrm{Fe}(\mathrm{CO})_{5}$ is $(Z=26$ for Fe$)$
(a) octahedral
(b) tetrahedral
(c) square pyramidal
(d) trigonal bipyramidal
6. Which of the following descriptions about $\left[\mathrm{FeF}_{6}\right]^{4-}$ is correct about complex ion?
(a) $s p^{3} d$, inner orbital complex, diamagnetic
(b) $s p^{3} d^{2}$, outer orbital complex, paramagnetic
(c) $d^{2} s p^{3}$, inner orbital complex, paramagnetic
(d) $d^{2} s p^{3}$, outer orbital complex, diamagnetic
7. Which of the following ligands will not show chelation?
(a) EDTA
(b) $D M G$
(c) Ethane -1, 2 - diamine
(d) $\mathrm{SCN}^{-}$
8. The magnetic moment of a divalent ion in aqueous solution with atomic number 25 is
(a) 5.9 BM
(b) 2.9 BM
(c) 6.9 BM
(d) 9.9 BM
9. Which of the following element has lowest melting point?
(a) Cr
(b) Fe
(c) Ni
(d) Cu
10. Which of the following Lanthanoids is commonly used?
(a) Lanthanum
(b) Nobelium
(c) Thorium
(d) Cerium
11. The trend of basicity of lanthanoid hydroxides
(a) increases across the lanthanoid series
(b) decrease across the lanthanoid series
(c) first increases and then decreases
(d) first decreases and then increases
12. In a mixture of $A$ and $B$, components show negative deviation when
(a) $\mathrm{A}-\mathrm{B}$ interaction is stronger that $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interaction
(b) $\mathrm{A}-\mathrm{B}$ interaction is weaker that $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interaction
(c) $\Delta \mathrm{V}_{\text {mix }}>0, \Delta \mathrm{~S}_{\text {mix }}>0$
(d) $\Delta \mathrm{V}_{\text {mix }}=0, \Delta \mathrm{~S}_{\text {mix }}>0$
13. For which of the following electrolyte, $\alpha \Lambda_{m}^{c} / \Lambda_{m}^{\infty}$ doesn't hold good:
(a) $\mathrm{CH}_{3} \mathrm{OH}$
(b) $\mathrm{HClO}_{4}$
(c) HCOOH
(d) $\mathrm{CH}_{3} \mathrm{COOH}$
14. The rate of reaction increases with rise in temperature because of
(a) Increase in number of activated molecules
(b) Increase in energy of activation
(c) Decrease in energy of activation
(d) Increase in the number of effective collisions.
15. The rate constant for a first order reaction is $2 \times 10^{-2} \mathrm{~min}^{-1}$. The $t 75 \%$ of reaction is
(a) 69.3
(b) 34.65
(c) 17.37
(d) 3.46
16. The unit of rate constant for the reaction $2 \mathrm{H}_{2}+2 \mathrm{NO} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$ which has rate $=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}$ is
(a) $\mathrm{mol} L^{-1} S^{-1}$
(b) $S^{-1}$
(c) $\mathrm{mol}^{-2} L^{2} S^{-1}$
(d) $\mathrm{mol} L^{-1}$
17. Half-life of a first order reaction is 10 mins. What percentage of the reaction will be completed in 100 $\min ?$
(a) $25 \%$
(b) $50 \%$
(c) $99.9 \%$
(d) $75 \%$
18. Limiting molar conductivity of $\mathrm{NH}_{4} \mathrm{OH}$ is
(a) $\Lambda_{m}^{\circ}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=\Lambda_{m}^{\circ}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)+\Lambda_{m}^{\circ}(\mathrm{NaCl})$
(b) $\Lambda_{m}^{\circ}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=\Lambda_{m}^{\circ}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)+\Lambda_{m}^{\circ}(\mathrm{NaOH})-\Lambda_{m}^{\circ}(\mathrm{NaCl})$
(c) $\Lambda_{m}^{\circ}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=\Lambda_{m}^{\circ}(\mathrm{NaOH})-\Lambda_{m}^{\circ}(\mathrm{NaCl})$
(d) $\Lambda_{m}^{\circ}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=\Lambda_{m}^{\circ}(\mathrm{NaOH})+\Lambda_{m}^{\circ}(\mathrm{NaCl})-\Lambda_{m}^{\circ}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$
19. The equivalent conductivity of $N / 10$ solution of acetic acid at $25^{\circ} \mathrm{C}$ is $14.3 \mathrm{Scm}^{2} \mathrm{eq}^{-1}$. What will be the degree of dissociation of acetic acid?
$\left(\Lambda_{m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=390.71 \mathrm{Scm}^{2} \mathrm{eq}^{-1}\right)$
(a) $3.66 \%$
(b) $4.9 \%$
(c) $2.12 \%$
(d) $0.008 \%$
20. Maximum amount of a solid solute that can be dissolved in a specified amount of a given liquid solvent does not depend on $\qquad$
(a) temperature
(b) nature of solute
(c) pressure
(d) nature of solvent
21. Value of Henry's law constant $K_{H}$
(a) increases with increase in temperature
(b) decreases with increase in temperature
(c) remains constant
(d) first increases then decreases
22. Osmotic pressure of a solution containing 2 g dissolved protein per $300 \mathrm{~cm}^{3}$ of solution is 20 mm of Hg at $7^{\circ} \mathrm{C}$. The molecular mass of protein is

Options:
(a) $5630 \mathrm{~g} \mathrm{~mol}^{-1}$
(b) $6239.6 \mathrm{~g} \mathrm{~mol}^{-1}$
(c) $7130 \mathrm{~g} \mathrm{~mol}^{-1}$
(d) $5120 \mathrm{~g} \mathrm{~mol}^{-1}$
23. A plant cell shrinks when it is kept in a
(a) hypotonic solution
(b) hypertonic solution
(c) isotonic solution
(d) pure water
24. In the given set of reactions 2 - Bromopropane $\xrightarrow[\text { alc/heat }]{\mathrm{AgCN}} X \xrightarrow{\mathrm{LiA}^{2} / \mathrm{H}_{4}} Y$ the IUPAC name of product ' $Y$ ' is
(a) N-Isopropylmethanamine
(b) N-Methylpropan-2-amine
(c) N-Methylpropanamine
(d) Butan-2-amine
25. Lucas test is associated with
(a) Aldehydes
(b) Phenols
(c) Carboxylic acid
(d) Alcohols
26. Which represents the correct order of relative acidic strengths?
(a) $\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
(b) $\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
(c) $\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCOOH}>\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
(d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCOOH}>\mathrm{ClCH}_{2} \mathrm{COOH}$
27. Which of the following ions have maximum stability?
(a) $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{OCH}_{3}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(d) $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{OCH}_{3}$
28. Which of the following reactions is not an example of electrophilic substitution in benzene ring?
(a)

(b)

(c)

(d)

29. The equilibrium constant at 717 K for the reaction $H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g)$ is 60 . The equilibrium constant for the reaction: $2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+I_{2}(g)$ is
(a) $1.6 \times 10^{-2}$
(b) $2 \times 10^{-2}$
(c) $2.56 \times 10^{-2}$
(d) $3 \times 10^{-2}$
30. The correct order of electronegativities of $\mathrm{N}, \mathrm{O}, \mathrm{F}$ and P is
(a) F $>$ O $>$ N $>$ P
(b) N $>$ O $>$ F $>$ P
(c) F $>$ N $>$ P $>$ O
(d) $\mathrm{F}>\mathrm{O}>\mathrm{P}>\mathrm{N}$
31. Which of the following statements is not correct?
(a) the shape of an atomic orbital depends on the magnetic quantum number
(b) the orientation of an atomic orbital depends on the magnetic quantum number
(c) the energy of an electron in an atomic orbital of multi electron atom depends on principal quantum number
(d) the number of degenerate atomic orbitals of one type depends on the values of azimuthal and magnetic quantum numbers
32. Which of the following is incorrect for $S F_{4}$ ?
(a) it has $s p^{3} d$ hybridization
(b) it has two lone pairs of electrons
(c) it has four bonding electrons
(d) it has see-saw shape
33. For the reaction at $25^{\circ} \mathrm{C}, \mathrm{X}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{XO}_{2} ; \Delta H=211 \mathrm{kcal}$ and $\Delta S=20 \mathrm{cal} \mathrm{K}^{-1}$. The reaction would be
(a) Spontaneous
(b) Non-spontaneous
(c) At equilibrium
(d) unpredictable
34. The reaction in which $\Delta \mathrm{H}>\Delta \mathrm{U}$ is
(a) $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)$
(b) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{3}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
(c) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(d) $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
35. The trans-alkenes are formed by the reduction of alkynes with
(a) $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}, \mathrm{BaSO}_{4}$
(b) $\mathrm{NaBH}_{4}$
(c) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}$
(d) $\mathrm{Sn}-\mathrm{HCl}$
36. Which has maximum number of molecules?
(a) $7 g N_{2}$
(b) $2 \mathrm{gH}_{2}$
(c) 16 g NO 2
(d) $16 g O_{2}$
37. The shape of $\mathrm{ClF}_{3}$ according to $V S E P R$ theory is
(a) planar triangle
(b) $T$-shape
(c) tetrahedral
(d) square planar
38. The pH of $0.05 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution is
(a) 12
(b) 13
(c) 1
(d) 10
39. Which of the following elements will have highest second ionization enthalpy?
(a) $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}$
(b) $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{1}$
(c) $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{2}$
(d) $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{3}$
40. Functional group of acid anhydride is
O
(a)
$-\mathrm{C}-\mathrm{O}$
(b) ${ }_{-}^{\|} \xrightarrow{\|}-\mathrm{O}-\mathrm{C}-$
(c) \| $-\mathrm{C}-\mathrm{Cl}$
O
(d) \| $-\mathrm{C}-\mathrm{NH}_{2}$
41. For which of the process, $\Delta S$ is negative?
(a) $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$
(b) $N_{2}(g, 1 \mathrm{~atm}) \rightarrow N_{2}(g, 8 \mathrm{~atm})$
(c) $2 \mathrm{SO}_{3}(g) \rightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g})$
(d) $C$ (diamond) $\rightarrow C$ (graphite)
42. Oxidation state of P in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ ?
(a) +3
(b) +2
(c) +1
(d) -1
43. The IUPAC name of the compound

(a) 2-amino-3-hydroxypropanoic acid
(b) 1-hydroxyl-2-aminoprop -3- oic acid
(c) 1-amino -2-hydroxypropanoic acid
(d) 3-hydroxyl-2-aminopropanoic acid
44. The incorrect statement regarding glucose
(a) Glucose on reduction with $\mathrm{HI} /$ red P forms $n$-hexane
(b) Glucose does not react with hydroxylamine $\left(\mathrm{NH}_{2} \mathrm{OH}\right)$
(c) Glucose on oxidation with $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ given Gluconic acid
(d) Glucose on acetylation forms pentaacetyl derivative
45. Each polypeptide in a protein has amino acids linked with each other in a specific sequence. This sequence of amino acids is said to be
(a) primary structure of proteins
(b) secondary structure of protein
(c) tertiary structure of protein
(d) quaternary structure of protein
46. In DNA, the complimentary bases are
(a) adenine and guanine : thymine and cytosine
(b) uracil and adenine : cytosine and guanine
(c) adenine and thymine : guanine and cytosine
(d) adenine and thymine : guanine and uracil
47. The best reagent for converting $2-$ phenylpropanamide into $2-$ phenylpropanamine is
(a) excess of $\mathrm{H}_{2}$
(b) $\mathrm{Br} r_{2}$ in aqueous NaOH
(c) iodine in presence of red $P$
(d) $\mathrm{LiAlH}_{4}$ in ether
48. The source of nitrogen in Gabriel synthesis of amine is
(a) sodium azide $\mathrm{NaN}_{3}$
(b) sodium nitride $\mathrm{NaNO}_{2}$
(c) potassium cyanide $K C N$
(d) potassium pthalimide $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO})_{2} \mathrm{~N}^{-} \mathrm{K}^{+}$
49. In the following reaction X is

(a)

(b)

(c)

(d)

50. Which of the following reagents are used for detecting the presence of carbonyl group?
(a) $\mathrm{NH}_{2} \mathrm{NH}_{2}$
(b) $\mathrm{NH}_{2} \mathrm{OH}$
(c) $\mathrm{NH}_{4} \mathrm{Cl}$
(d) Both (a) and (b)
51. Under Wolf Kishner reduction, the conversions which may be brought about are
(a) Benzophenone to diphenyl methanol
(b) Benzaldehyde into benzyl alcohol
(c) 2-Hexanone into $n$-Hexane
(d) 2-Hexanone into 2-Hexanol
52. Which of the following acids has the smallest dissociation constant?
(a) $\mathrm{CH}_{3} \mathrm{CHFCOOH}$
(b) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(c) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(d) $\mathrm{CH}_{3} \mathrm{CHBrCOOH}$
53. Which among the following reactants and products not correctly matched
(a) $2 \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{NaOH}$

(b) $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{N}-\mathrm{NH}_{2}$
(c) $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCN}$
$\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH}) \mathrm{CN}$
(d) $2 \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{KOH}$
$\mathrm{CH}_{3} \mathrm{COOK}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
54. Iodoform can be prepared from all except
(a) isopropyl alcohol
(b) 3-methyl-2-butanone
(c) isobutyl alcohol
(d) ethyl methyl Ketone
55. From among the following alcohols the one that would react fastest with conc. HCl and anhydrous $\mathrm{ZnCl}_{2}$ is $\qquad$ .
(a) 2-Methyl Propanol
(b) 1-Butanol
(c) 2-Butanol
(d) 2-Methyl propan $-2-$ ol
56. Phenol on treatment with alcoholic KOH and chloroform gives
(a) Salicylaldehyde
(b) Salicylic acid
(c) Phthalic acid
(d) benzoic acid
57. Which of the following has maximum $p K_{a}$ value?
(a)

(b)

(c)

(d)

58. Which of the following is an example of $S_{N} 2$ reaction?
(a) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}$
(b) $(\mathrm{CH})_{2} \mathrm{CHBr}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{Br}^{-}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{-\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{2}=\mathrm{CH}_{2}$
(d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}+\mathrm{Br}^{-}$
59. In the following reaction

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[(i i) \mathrm{H}_{3} \mathrm{O}^{+}]{(i) \text { Mg.ether }} X
$$

The product $X$ is
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
60. Which of the following is the correct method of preparation of methyl fluoride?
(a) $\mathrm{CH}_{4}+\mathrm{HF} \rightarrow$
(b) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HF} \rightarrow$
(c) $\mathrm{CH}_{4}+\mathrm{F}_{2} \rightarrow$
(d) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{AgF} \rightarrow$

## Mathematics

## Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark.

61. The relation $R$, defined on real numbers by a $R$ biff $a-b$ is rational, is
(a) Reflexive but not symmetric
(b) Symmetric but not transitive
(c) Transitive but not reflexive
(d) Reflexive, symmetric and transitive
62. The domain of the function $f(x) \frac{1}{\sqrt{[x]^{2}-[x]-6}}$ is
(a) $(-\infty,-2] \cup(4, \infty)$
(b) $(-\infty,-2) \cup(4, \infty)$
(c) $(-\infty,-2] \cup[4, \infty)$
(d) $(-\infty,-2) \cup[4, \infty)$
63. If the moduli of $z$ and $1+z$ are equal, then
(a) $z$ is a real number
(b) real part of $z$ is $-\frac{1}{2}$
(c) real part of $z$ is zero
(d) real part of $z$ is $\frac{1}{2}$
64. If $8 \sin \theta=4+\cos \theta$, then one of the values of $\sin \theta$ is equal to
(a) $\frac{5}{11}$
(b) $\frac{5}{13}$
(c) $\frac{5}{7}$
(d) $\frac{5}{9}$
65. $\tan 10^{\circ} \tan 20^{\circ} \tan 30^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}=$
(a) 0
(b) -1
(c) $\frac{1}{\sqrt{3}}$
(d) 1
66. If $1+\tan \theta+\tan ^{2} \theta+\ldots .$. upto $+\infty=\frac{\sqrt{3}}{\sqrt{3}-1}$, then the least + ve value of $\theta$ is
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{8}$
(d) $\frac{\pi}{12}$
67. If $\sin \left(45^{\circ}+A\right) \sin \left(45^{\circ}-A\right)=k \cos 2 A$, then $k=$
(a) 2
(b) $\frac{1}{2}$
(c) 1
(d) 4
68. If $\sin x \cos y=\frac{1}{2}$ and $2 \tan x=5 \tan y$, then $\sin (x+y)=$
(a) $\frac{7}{10}$
(b) $\frac{3}{10}$
(c) $\frac{1}{10}$
(d) $\frac{9}{10}$
69. The value of $\sin \left(2 \tan ^{-1} \frac{1}{3}\right)+\cos \left(\tan ^{-1}(2 \sqrt{2})\right)=$
(a) $\frac{4}{5}$
(b) $\frac{13}{15}$
(c) $\frac{14}{15}$
(d) 1
70. Two finite sets have $m$ and $n$ elements. The number of subsets of the first set 112 more than that of the second set. The value of $m$ and $n$ are respectively
(a) 4,7
(b) 7,4
(c) 4,4
(d) 7,7
71. If $3 \operatorname{cosec}^{-1} \frac{1+x^{2}}{2 x}-4 \sec ^{-1} \frac{1+x^{2}}{1-x^{2}}+2 \cot ^{-1} \frac{1-x^{2}}{2 x}=\cot ^{-1} \frac{\sqrt{3}}{3}$, then $x=$
(a) $\sqrt{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) $2-\sqrt{3}$
(d) $\sqrt{2}-1$
72. If $|3-2 x|<1$, then $x$ lies on the interval
(a) $(3,4)$
(b) $(1,2)$
(c) $(-1,2)$
(d) $(-2,-1)$
73. The total number of 3 digit even numbers than can be composed from the digits $1,2,3, \ldots \ldots . .9$, when the repetition of digits is not allowed is
(a) 224
(b) 280
(c) 324
(d) 405
74. $A B C$ is an equilateral triangle. If $A$ is $(1,2)$ and the equation of the side $B C$ is $3 x+4 y+14=0$, then the mid-point of the side $B C$ is
(a) $(-2,-1)$
(b) $(2,-5)$
(c) $(-2,-2)$
(d) $(-3,-1)$
75. If $C$ is the centre and $L$ and $L^{\prime}$ are the ends of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, then the area of the triangle $C L L^{\prime}$ is
(a) 4.8 sq. units
(b) 9.6 sq. units
(c) 19.6 sq. units
(d) None of these
76. If the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{5}{4}$ and $2 x+3 y-6=0$ is a focal chord of the hyperbola, then the length of transverse axis equal to......
(a) $\frac{12}{5}$
(b) $\frac{24}{5}$
(c) $\frac{6}{4}$
(d) $\frac{5}{24}$
77. Find the value of $k$ for which the lines $\frac{x-1}{2}=\frac{2 y-1}{3}=\frac{1-3 z}{k}$ and $\frac{x+1}{2}=\frac{3 y-5}{2}=\frac{z-4}{3}$ are perpendicular to each other
(a) 5
(b) -5
(c) 6
(d) 4
78. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $x \hat{i}+11 \hat{j}$ are collinear, then $x=$
(a) -8
(b) 4
(c) 8
(d) -4
79. The diagonal of a parallelogram are along the vectors $3 i+6 j-2 k$ and $-1-2 j+8 k$. Then the length of shorter side of the parallelogram is
(a) $2 \sqrt{3}$
(b) $\sqrt{14}$
(c) $3 \sqrt{5}$
(d) $4 \sqrt{3}$
80. If $\vec{a}$ and $\vec{b}$ are the two vectors such that $|\vec{a}|=3 \sqrt{3},|\vec{b}|=4$ and $|\vec{a}+\vec{b}|=\sqrt{7}$, then the angle between $\vec{a}$ and $\vec{b}$ is
(a) $150^{\circ}$
(b) $30^{\circ}$
(c) $60^{\circ}$
(d) $120^{\circ}$
81. If $\left(\begin{array}{cc}-1 & 2 \\ 3 & -2\end{array}\right)\binom{x}{y}=\binom{0}{4}$, then $(x, y)=$
(a) $(4,0)$
(b) $(0,4)$
(c) $(4,4)$
(d) None of these
82. If $A=\left[\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & 2 \cos \theta\end{array}\right]$ and $A^{T}+A=I_{2}$, then
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) None of these
83. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $A^{-1}=$
(a) $\frac{1}{2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
(b) $\frac{-1}{2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right]$
(d) $\left[\begin{array}{cc}-2 & 4 \\ 1 & 3\end{array}\right]$
84. $\lim _{n \rightarrow \infty}\left(2^{n}+3^{n}+5^{n}\right)^{1 / n}=$ $\qquad$
(a) 2
(b) 3
(c) 5
(d) $e^{2+3+5}$
85. $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$ is equal to
(a) $\frac{1}{2}$
(b) 1
(c) 2
(d) $-\frac{1}{4}$
86. $\lim _{x \rightarrow 0} \frac{\sec 5 x-\sec 3 x}{\sec 3 x-\sec x}=$
(a) 2
(b) 1
(c) 4
(d) 8
87. Let $f(x)=\left\{\begin{array}{cc}x^{2}+1 & x \leq 0 \\ 2-x & x>0\end{array}\right.$, then which of the following is true?
(a) $f(x)$ is continuous for all $x$
(b) $\lim _{x \rightarrow 0} f(x)$ doesn't exist
(c) $\lim _{x \rightarrow 0} f(x)=1$
(d) $f(x)$ is not defined for all $x$
88. The function $f(x)=\left\{\begin{array}{cc}x^{2} & \text { for } x<1 \\ 2-x & \text { for } x \geq 1\end{array}\right.$ is
(a) not differentiable at $x=1$
(b) differentiable at $x=1$
(c) not continuous at $x=1$
(d) none of these
89. If $f(x)=1+\sin x+\frac{\sin ^{2} x}{2!}+\frac{\sin ^{3} x}{3!}+$ $\qquad$ then $f^{\prime}(x)=$
(a) $f(x)$
(b) $f(x) \cos x$
(c) $f(x) \operatorname{cosec} x$
(d) $f(x) \sin x$
90. Is $f(\sin x)=\tan ^{2} x$, then $f^{\prime}(x)=$
(a) $\frac{x^{2}}{1-x^{2}}$
(b) $\frac{2 x}{\left(1-x^{2}\right)^{2}}$
(c) $\frac{2 x-4 x^{2}}{\left(1-x^{2}\right)^{2}}$
(d) $\frac{2 x}{\left(1+x^{2}\right)^{2}}$
91. If $x=a \cos ^{2} t, y=a \sin ^{2} t, \frac{d y}{d x}=$ ?
(a) 1
(b) -1
(c) 0
(d) none of these
92. If $A$ and $B$ are two events such that $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \mid B)=\frac{1}{4}$, then $P\left(A^{\prime} \cap B^{\prime}\right)$ equal
(a) $\frac{1}{12}$
(b) $\frac{3}{4}$
(c) $\frac{1}{4}$
(d) $\frac{3}{16}$
93. The interval in which the function $y=x^{3}+6 x^{2}+6$ is increasing, is
(a) $(-\infty,-4) \cup(0, \infty)$
(b) $(-\infty, 4)$
(c) $(-4,0)$
(d) $(-\infty, 0) \cup(4, \infty)$
94. The area of an equilateral triangle is increasing at the rate of $10 \sqrt{3} \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$. Then the rate of increase of the sides of the triangle when the area is $4 \sqrt{3}$, is
(a) $4 \mathrm{~cm} / \mathrm{sec}$
(b) $5 \mathrm{~cm} / \mathrm{sec}$
(c) $\frac{10}{3} \mathrm{~cm} / \mathrm{sec}$
(d) $2 \mathrm{~cm} / \mathrm{sec}$
95. A rectangle has three of it vertices on the coordinate axes and fourth on the curve $y=4-x^{2}$. Then the maximum area of the rectangle is (in sq. units)
(a) $\frac{1}{3 \sqrt{3}}$
(b) $\frac{4}{3 \sqrt{3}}$
(c) $\frac{8}{3 \sqrt{3}}$
(d) $\frac{16}{3 \sqrt{3}}$
96. $\int(1-\cos x) \operatorname{cosec}^{2} x d x=$
(a) $\tan \frac{x}{2}+c$
(b) $\cot \frac{x}{2}+c$
(c) $\frac{1}{2} \tan \frac{x}{2}+c$
(d) $2 \tan \frac{x}{2}+c$
97. $\int \frac{e^{2 x}+1}{e^{2 x}-1} d x=$
(a) $\log \left(e^{x}+e^{-x}\right)+c$
(b) $\tan ^{-1}\left(2^{x}\right)+c$
(c) $\frac{1}{2} \log \frac{e^{x}-1}{e^{x}+1}$
(d) $\log \left(e^{x}-e^{-x}\right)+c$
98. $\int\left(\frac{\cos x}{x}-\log x^{\sin x}\right) d x=$
(a) $\log x^{\cos x}+C$
(b) $\log x^{\sin x}+C$
(c) $\log (x \cos x)+C$
(d) $\log \left(\frac{\cos x}{x}\right)+C$
99. $\int e^{x}\left\{\frac{1+\sin x \cos x}{\cos ^{2} x}\right\} d x=$
(a) $e^{2} \cos x+c$
(b) $e^{x} \sec x \tan x+c$
(c) $e^{x} \tan x+c$
(d) $e^{x} \cos ^{2} x-1+c$
100. $\int_{1}^{2} \frac{d x}{x+x^{9}}=$
(a) $\frac{1}{8} \log \frac{128}{257}$
(b) $\frac{1}{8} \log \frac{512}{257}$
(c) $\frac{1}{8} \log \frac{1024}{257}$
(d) None of these
101.The probability that an event $A$ happens in one trial of an experiment is 0.4 . three independent trials of these experiments are performed. The probability that the event $A$ happens atleast once is
(a) 0.936
(b) 0.784
(c) 0.904
(d) 0.216
101. The feasible region for an $L P P$ is shown in the figure:

If $Z=11 x+7 y$, then $Z_{\max }=$

(a) 57
(b) 35
(c) 46
(d) 47
103.Bag $A$ contains 2 white and 3 red balls and bag $B$ contains 4 white and 5 red balls. One ball is drawn at random from one of the bags and is found to be red. Then the probability that it was drawn from Bag $B$ is
(a) $\frac{25}{52}$
(b) $\frac{25}{51}$
(c) $\frac{15}{52}$
(d) $\frac{5}{52}$
104.A die is thrown, Let $A$ be the event that the number obtained is greater than 3. Let $B$ be the event that the number obtained is less than 5 . Then $(A \cup B)$ is
(a) $\frac{2}{5}$
(b) $\frac{3}{5}$
(c) 0
(d) 1
105.The general solution of the differential equation $2 x \frac{d y}{d x}-y=3$
(a) $y-3=c x$
(b) $(y-3)^{2}+2 c x=0$
(c) $(y+3)^{2}=c x$
(d) $(y-3)^{2}=c x$
106.If $|x+5| \geq 10$ then
(a) $x \in(-15,5]$
(b) $x \in(-5,5]$
(c) $x \in(-\infty,-15] \cup[5, \infty)$
(d) $x \in(-\infty,-15) \cap(5, \infty)$
107.The equation of the line parallel to the line $3 x-4 y+2=0$ and passing through $(-2,3)$ is
(a) $3 x-4 y+18=-0$
(b) $3 x-4 y-18=0$
(c) $3 x+4 y+18=0$
(d) $3 x+4 y-18=0$
108.If $\left(\frac{1-i}{1+i}\right)^{96}=a+i b$ then $(a, b)$ is
(a) $(1,1)$
(b) $(1,0)$
(c) $(0,1)$
(d) $(0,-1)$
109. The number of ways in which 5 girls and 3 boys can be seated in a row so that no two boys are together is
(a) 14040
(b) 14440
(c) 14000
(d) 14400
110. For the LPP, maximise $z=x+4 y$ subject to the constraints $x+2 y \leq 2, x+2 y \geq 8, x, y \geq 0$
(a) $z_{\text {max }}=4$
(b) $z_{\max }=8$
(c) $z_{\max }=18$
(d) Has no feasible solution
111. $\int_{0}^{\pi / 2} \frac{\sin ^{1000} x d x}{\sin ^{1000} x+\cos ^{1000} x}$ is equal to
(a) $\frac{\pi}{2}$
(b) 1000
(c) $\frac{\pi}{4}$
(d) 1
112. The value of $\sin ^{-1}\left(\cos \frac{53 \pi}{5}\right)$ is
(a) $\frac{\pi}{10}$
(b) $\frac{3 \pi}{5}$
(c) $\frac{-\pi}{10}$
(d) $\frac{-3 \pi}{5}$
113.The value of $\int \frac{e^{x}\left(x^{2} \tan ^{-1}+\tan ^{-1} x+1\right)}{x^{2}+1} d x$ is equal to
(a) $\tan ^{-1}\left(x^{e}\right)+c$ (b) $e^{x} \tan ^{-1} x+c$
(c) $e^{\tan ^{-1 x}+c}$
(d) $\tan ^{-1}\left(e^{x}\right)+c$
114.If $A$ is a matrix of order $m \times n$ and $B$ is a matrix such that $A B^{\prime}$ and $B^{\prime} A$ are both defined order of the matrix $B$ is
(a) $n \times m$
(b) $m \times m$
(c) $m \times n$
(d) $n \times n$
115.The total number of terms in the expansion of $(x+a)^{47}-(x-a)^{47}$ after simplification is
(a) 24
(b) 47
(c) 48
(d) 96
116.The range of the function $f(x)=\sqrt{9-x^{2}}$ is
(a) $(0,3)$
(b) $[0,3]$
(c) $(0,3]$
(d) $[0,3)$
117.The area of triangle with vertices $(K, 0),(4,0),(0,2)$ is 4 square units, then the value of $K$ is
(a) 0 or 8
(b) 0 or -8
(c) 0
(d) 8
118. Let $f: R \rightarrow R$ be defined by $f(x)=x^{4}$, then
(a) $f$ is one-one and onto
(b) $f$ may be one-one and onto
(c) $f$ is one-one but not onto
(d) $f$ is neither one-one nor onto
119.If $A$ is a square matrix of order $3 \times 3$, then $|K A|$ is equal to
(a) $K|A|$
(b) $K^{2}|A|$
(c) $K^{3}|A|$
(d) $3 K|A|$
120.The integrating factor of the differential equation $x \cdot \frac{d y}{d x}+2 y=x^{2}$ is $(x \neq 0)$
(a) $x^{2}$
(b) $\log |x|$
(c) $e^{\log x}$
(d) $x$

## Physics

## Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark.

121. With what velocity should a particle be projected so that its height becomes equal to radius of Earth? ( $G$ is gravitational constant, $M$ and $R$ are mass and radius of the Earth)
(a) $\left(\frac{G M}{R}\right)^{1 / 2}$
(b) $\left(\frac{8 G M}{R}\right)^{1 / 2}$
(c) $\left(\frac{2 G M}{R}\right)^{1 / 2}$
(d) $\left(\frac{4 G M}{R}\right)^{1 / 2}$
122.A ball is falling in a lake of depth 200 m creates a decrease $0.1 \%$ in its volume at the bottom. The bulk modulus of the material of the ball will be $\left(g=9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)$
(a) $19.6 \times 10^{-8} \mathrm{Nm}^{-2}$
(b) $19.6 \times 10^{10} \mathrm{Nm}^{-2}$
(c) $19.6 \times 10^{-10} \mathrm{~N} \mathrm{~m}^{-2}$
(d) $19.6 \times 10^{8} \mathrm{~N} \mathrm{~m}^{-2}$
122. A ring of mass 10 kg and diameter 0.4 m is rotated about its axis. If it makes 2100 revolutions per minute, then its angular momentum will be about
(a) $44 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
(b) $88 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
(c) $4.4 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
(d) $0.4 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
124.A thin liquid film formed between a U-shaped wire and a light slider supports a weight of $1.5 \times 10^{-2} \mathrm{~N}$ (see figure). The length of the slider is 30 cm and its weight negligible. The surface tension of the liquid film is
(a) $0.0125 \mathrm{~N} \mathrm{~m}^{-1}$
(b) $0.1 \mathrm{Nm}^{-1}$
(c) $0.05 \mathrm{~N} \mathrm{~m}^{-1}$
(d) $0.025 \mathrm{Nm}^{-1}$

125.The ratio of the coefficient of thermal conductivity of two different materials is $5: 3$. If the thermal resistance of the two rods of these materials of same thickness is same, then the ratio of the length of these rods will be
(a) $5: 3$
(b) $3: 5$
(c) $9: 25$
(d) $25: 9$
126.A gas at the temperature 250 K is contained in a closed vessel. If the gas is heated through 25 K , then the percentage increase in its pressure will be
(a) $10 \%$
(b) $20 \%$
(c) $30 \%$
(d) $40 \%$
127.If $Q, E$ and $W$ denote respectively the heat added, change in internal energy and the work done in a closed cyclic process, then
(a) $E=0$
(b) $Q=0$
(c) $W=0$
(d) $Q=W=0$
123. A hollow sphere is filled with water. It is hung by a long thread. As the water flows out of a hole at the bottom, the period of oscillation will
(a) First increase and then decrease
(b) First decrease and then increase
(c) Go on increasing
(d) Go on decreasing
129.What type of vibrations are produced in a sitar wire?
(a) Progressive transverse
(b) Progressive longitudinal
(c) Stationary transverse
(d) Stationary longitudinal
130.A hollow cylinder has a charge $q C$ within it. If $\phi$ is the electric flux in units of V-m associated with the curved surface $B$, the flux linked with the plane surface $A$ in units of V-m will be
(a) $\frac{q}{2 \varepsilon_{0}}$
(b) $\frac{\phi}{3}$
(c) $\left(\frac{q}{\varepsilon_{0}}-\phi\right)$
(d) $\frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi\right)$

131.There is an electric field $E$ in $x$-direction. If the work done on moving a charge of 0.2 C through a distance of 2 m along a line making an angle $60^{\circ}$ with $x$-axis is 4 J , then what is the value of $E$ ?
(a) $3 \mathrm{NC}^{-1}$
(b) $4 \mathrm{NC}^{-1}$
(c) $5 \mathrm{NC}^{-1}$
(d) $20 \mathrm{NC}^{-1}$
132.Two positive charges of magnitude $q$ are placed at the ends of a side $l$ of a square of side $2 a$. Two negative charges of the same magnitude are kept at the other corners. Starting from rest, if a charge $Q$ moves from the middle of side $l$ to the centre of square, its kinetic energy at the centre of square is
(a) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q Q}{a}\left(1-\frac{1}{\sqrt{5}}\right)$
(b) zero
(c) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q Q}{a}\left(1+\frac{1}{\sqrt{5}}\right)$
(d) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q Q}{a}\left(1-\frac{2}{\sqrt{5}}\right)$
133.Two spheres $A$ and $B$ of radius 4 cm and 6 cm are given charges of $80 \mu \mathrm{C}$ and $40 \mu \mathrm{C}$ respectively. If they are connected by a fine wire, the amount of charge flowing from one to the other is
(a) $20 \mu \mathrm{C}$ from $A$ to $B$
(b) $16 \mu \mathrm{C}$ from $A$ to $B$
(c) $32 \mu \mathrm{C}$ from $B$ to $A$
(d) $32 \mu \mathrm{C}$ from $A$ to $B$
124. Four charges $q_{1}=2 \times 10^{-8} \mathrm{C}, q_{2}=-2 \times 10^{-8} \mathrm{C}, q_{3}=-3 \times 10^{-8} \mathrm{C}$ and $q_{4}=6 \times 10^{-8} \mathrm{C}$ are placed at four corners of a square of side $\sqrt{2} \mathrm{~m}$. What is the potential at the centre of the square?
(a) 270 V
(b) 300 V
(c) Zero
(d) 100 V
135.A parallel plate capacitor has a plate area of $50 \mathrm{~cm}^{2}$ and plate separation of 1.0 cm . A potential difference of 200 volt is applied across the plates with air as the dielectric between plates. The battery is then disconnected and a piece of Bakelite of dielectric constant 4.8 inserted which fills the complete volume between the plates. The capacitance before and after inserting Bakelite are respectively.
(a) $44 \mathrm{pF}, 211.2 \mathrm{pF}$
(b) $4.4 \mathrm{pF}, 211.2 \mathrm{pF}$
(c) $4.4 \mathrm{pF}, 21.1 \mathrm{pF}$
(d) $21.12 \mathrm{pF}, 44 \mathrm{pF}$
136.Two positive ions, each carrying a charge $q$, are separated by a distance $d$. If $F$ is the force of repulsion between the ions, the number of electrons missing from each ion will be ( $e$ being the charge of an electron)
(a) $\frac{4 \pi \varepsilon_{0} F d^{2}}{e^{2}}$
(b) $\sqrt{\frac{4 \pi \varepsilon_{0} F e^{2}}{d^{2}}}$
(c) $\sqrt{\frac{4 \pi \varepsilon_{0} F d^{2}}{e^{2}}}$
(d) $\frac{4 \pi \varepsilon_{0} F d^{2}}{q^{2}}$
125. The electric field intensity just sufficient to balance the Earth's gravitational attraction on an electron will be (given mass and charge of an electron respectively are $9.1 \times 10^{-31} \mathrm{~kg}, 1.6 \times 10^{-19} \mathrm{C}$ and $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ )
(a) $-5.6 \times 10^{-11} \mathrm{NC}^{-1}$
(b) $-4.8 \times 10^{-15} \mathrm{NC}^{-1}$
(c) $-1.6 \times 10^{-19} \mathrm{NC}^{-1}$
(d) $-3.2 \times 10^{-19} \mathrm{NC}^{-1}$
126. At room temperature, copper has free electron density of $8.4 \times 10^{28} \mathrm{per} \mathrm{m}^{3}$. The copper conductor has a cross-section of $10^{-6} \mathrm{~m}^{2}$ and carries a current of 5.4 A . The electron drift velocity in copper is
(a) $400 \mathrm{~m} \mathrm{~s}^{-1}$
(b) $0.4 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $0.4 \mathrm{~mm} \mathrm{~s}^{-1}$
(d) $72 \mathrm{~m} \mathrm{~s}^{-1}$
127. The powers of two electric bulbs are 100 watt and 200 watt. Both of them are joined with 220 volt. The ratio of resistance of their filament will be
(a) $4: 1$
(b) $1: 4$
(c) $1: 2$
(d) $2: 1$
140.The graph shows the variation of resistivity with temperature T. The graph can be of
(a) Copper
(b) Nichrome
(c) Germanium
(d) Silver

141.The resistance of a wire at room temperature $30^{\circ} \mathrm{C}$ is found to be $10 \Omega$. Now to increase the resistance by $10 \%$, the temperature of the wire must be [The temperature coefficient of resistance of the material of the wire is 0.002 per ${ }^{\circ} \mathrm{C}$ ]
(a) $36^{\circ} \mathrm{C}$
(b) $83^{\circ} \mathrm{C}$
(c) $63^{\circ} \mathrm{C}$
(d) $33^{\circ} \mathrm{C}$
142.See the electric circuit shown in the figure. Which of the following equations is a correct equation for it?
(a) $\varepsilon_{2}-i_{2} r_{2}-\varepsilon_{1}-i_{1} r_{1}=0$
(b) $-\varepsilon_{2}-\left(i_{1}+i_{2}\right) R+i_{2} r_{2}=0$
(c) $\varepsilon_{1}-\left(i_{1}+i_{2}\right) R+i_{1} r_{1}=0$
(d) $\varepsilon_{1}-\left(i_{1}+i_{2}\right) R-i_{1} r_{1}=0$

143.Five equal resistances each of resistance $R$ are connected as shown in the figure. A battery of $V$ volts is connected between $A$ and $B$. The current flowing in $A F C E B$ will be
(a) $\frac{2 V}{R}$
(b) $\frac{3 V}{R}$
(c) $\frac{V}{R}$
(d) $\frac{V}{2 R}$

128. You are given a closed circuit with radii $a$ and $b$ as shown in figure carrying current $i$. The magnetic dipole moment of the circuit is
(a) $\pi\left(a^{2}+b^{2}\right) i$
(b) $\frac{1}{2} \pi\left(a^{2}+b^{2}\right) i$
(c) $\pi\left(a^{2}-b^{2}\right) i$
(d) $\frac{1}{2} \pi\left(a^{2}-b^{2}\right) i$

145.A 10 eV electron is circulating in a plane at right angles to a uniform field of magnetic field $10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$ ( $=1.0$ gauss). The orbital radius of the electron is
(a) 12 cm
(b) 16 cm
(c) 11 cm
(d) 18 cm
146.The length of a solenoid is 0.4 m and the number of turns in it is 500 . A current of 3 A is flowing in it. In a small coil of radius 0.01 m and number of turns 10 , a current of 0.4 A is flowing. The torque necessary to keep the axis of this coil perpendicular to the axis of solenoid will be
(a) $3.6 \times 10^{-6} \mathrm{Nm}$
(b) $3.6 \times 10^{-4} \mathrm{Nm}$
(c) $3.6 \times 10^{-6}$ dyne- cm
(d) $3.6 \times 10^{-4}$ dyne- cm
129. An electric current of 30 ampere is flowing in each of two parallel conducting wires placed 5 cm apart. The force acting per unit length on either of the wires will be
(a) $3.6 \times 10^{-3} \mathrm{Nm}^{-1}$
(b) $3.6 \times 10^{-3}$ dyne $\mathrm{cm}^{-1}$
(c) $3.6 \times 10^{-5} \mathrm{~N} \mathrm{~m}^{-1}$
(d) $3.6 \times 10^{-2} \mathrm{Nm}^{-1}$
148.A vibration magnetometer placed in magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2 s in Earth's horizontal magnetic field of 24 microtesla. When a horizontal field of 18 microtesla is produced opposite to the Earth's field by placing a current carrying wire, the new time period of magnet will be
(a) 1 s
(b) 2 s
(c) 3 s
(d) 4 s
130. To convert 800 mV range milli voltmeter of resistance $40 \Omega$ into a galvanometer of 100 mA range, the resistance to be connected as shunt is
(a) $10 \Omega$
(b) $20 \Omega$
(c) $30 \Omega$
(d) $40 \Omega$
150.A magnetic needle is kept in a non-uniform magnetic field. It experiences
(a) neither a force nor a torque
(b) a torque but not a force
(c) a force but not a torque
(d) a force and a torque
151.A six pole generator with fixed field excitation develops an e.m.f. of 100 V when operating at 1500 r.p.m. At what speed must it rotate to develop 120 V ?
(a) 1200 r.p.m
(b) 1800 r.p.m
(c) 1500 r.p.m
(d) 400 r.p.m
152.A coil of $N=100$ turns carries a current $I=5 \mathrm{~A}$ and creates a magnetic flux $\phi=10^{-5} \mathrm{Tm}^{2}$ per turn. The value of its inductance $L$ will be
(a) 0.05 mH
(b) 0.10 mH
(c) 0.15 mH
(d) 0.20 mH
153.A transformer reduces 220 V to 11 V . The primary draws 5 A of current and secondary 90 A . The efficiency of the transformer is
(a) $20 \%$
(b) $40 \%$
(c) $70 \%$
(d) $90 \%$
154.The r.m.s. value of potential difference $V$ shown in the figure is
(a) $V_{0}$
(b) $V_{0} / \sqrt{2}$
(c) $V_{0} / 2$
(d) $V_{0} / \sqrt{3}$

155.In series combination of $R, L$ and $C$ with an $A . C$ source at resonance, if $R=20 \mathrm{ohm}$, then impedence $Z$ of the combination is
(a) 20 ohm
(b) Zero
(c) 10 ohm
(d) 400 ohm
131. The range of wavelength of visible light is
(a) $10 \AA$ to $100 \AA$
(b) $4000 \AA$ to $8000 \AA$
(c) $8000 \AA$ to $10,000 \AA$
(d) $10,000 \AA$ to $15,000 \AA$
157.A 2.0 cm tall object is placed 15 cm in front of a concave mirror of focal length 10 cm . What is the size and nature of the image?
(a) 4 cm , real
(b) 4 cm , virtual
(c) 1.0 cm , real
(d) None of these
132. A ray of light passes through an equilateral prism such that the angle of incidence is equal to the angle of emergence and the latter is equal to $\frac{3}{4}$ th of angle of prism. The angle of deviation is
(a) $25^{\circ}$
(b) $30^{\circ}$
(c) $45^{\circ}$
(d) $35^{\circ}$
133. Light travels in two media $A$ and $B$ with speeds $1.8 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ and $2.4 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ respectively. Then the critical angle between them is
(a) $\sin ^{-1}\left(\frac{2}{3}\right)$
(b) $\tan ^{-1}\left(\frac{3}{4}\right)$
(c) $\tan ^{-1}\left(\frac{2}{3}\right)$
(d) $\sin ^{-1}\left(\frac{3}{4}\right)$
160.A thin prism of angle $15^{\circ}$ made of glass of refractive index $\mu_{1}=1.5$ is combined with another prism of glass of refractive index $\mu_{2}=1.75$. The combination of the prism produces dispersion without deviation. The angle of the second prism should be
(a) $7^{\circ}$
(b) $10^{\circ}$
(c) $12^{\circ}$
(d) $5^{\circ}$
161.If two waves represented by $y_{1}=4 \sin \omega t$ and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point, the amplitude of the resulting wave will be about
(a) 7
(b) 6
(c) 5
(d) 3.5
134. Green light of wavelength $5460 \AA$ is incident on an air-glass interface. If the refractive index of glass is 1.5 , the wavelength of light in glass would be $\left(c=3 \times 10^{8} \mathrm{~ms}^{-1}\right)$
(a) $3640 \AA$
(b) $5460 \AA$
(c) $4861 \AA$
(d) None of these
163.The figure shows a plot of photocurrent versus anode potential for a photosensitive surface for three different radiations. Which one of the following is a correct statement?

(a) Curves (1) and (2) represent incident radiations of same frequency but of different intensities
(b) Curves (2) and (3) represent incident radiations of different frequencies and different intensities
(c) Curves (2) and (3) represent incident radiations of same frequency having same intensity
(d) Curves (1) and (2) represent incident radiations of different frequencies and different intensities
135. Which metal will be suitable for a photoelectric cell using light of wavelength $4000 \AA$. The work functions of sodium and copper are respectively 2.0 eV and 4.0 eV .
(a) Sodium
(b) Copper
(c) Both
(d) None of these
165.In Bohr model of hydrogen atom, let P.E.represents potential energy and T.E.represents the total energy. In going to a higher level.
(a) P.E. decreases, T.E.increases
(b) P.E. increases, T.E. decreases
(c) P.E. decreases, T.E. decreases
(d) P.E. increases, T.E.increases
166.An $\alpha$-particle of energy 5 MeV is scattered through $180^{\circ}$ by a fixed uranium nucleus. The distance of closest approach is of the order of
(a) $10^{-12} \mathrm{~cm}$
(b) $10^{-10} \mathrm{~cm}$
(c) $1 \AA$
(d) $10^{-15} \mathrm{~cm}$
167.Rutherford's atomic model was unstable because
(a) Nuclei will break down
(b) Electrons do not remain in orbit
(c) Orbiting electrons radiate energy
(d) Electrons are repelled by the nucleus
168.The mass defect in a particular nuclear reaction is 0.3 grams. The amount of energy liberated in kilowatt hour is (Velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ )
(a) $1.5 \times 10^{6}$
(b) $2.5 \times 10^{6}$
(c) $3 \times 10^{6}$
(d) $7.5 \times 10^{6}$
169.A nucleus disintegrates into two nuclear parts which have their velocities in the ratio $2: 1$. Ratio of their nuclear sizes will be
(a) $2^{1 / 3}: 1$
(b) $1: 3^{1 / 2}$
(c) $3^{1 / 2}: 1$
(d) $1: 2^{1 / 3}$
170.If the total binding energies of ${ }_{1}^{2} \mathrm{H},{ }_{2}^{4} \mathrm{He},{ }_{26}^{56} \mathrm{Fe} \&{ }_{92}^{235} \mathrm{U}$ nuclei are $2.22,28.3,492$ and 1786 MeV respectively, identify the most stable nucleus of the following.
(a) ${ }_{26}^{56} \mathrm{Fe}$
(b) ${ }_{1}^{2} H$
(c) ${ }_{92}^{235} U$
(d) ${ }_{2}^{4} \mathrm{He}$
136. At absolute zero, Si acts as
(a) non-metal
(b) metal
(c) insulator
(d) none of these
172.In semiconductors, at room temperature
(a) The conduction band is completely empty
(b) The valence band is partially empty and the conduction band is partially filled
(c) The valence band is completely filled and the conduction band is partially filled
(d) The valence band is completely filled
173.Reverse bias applied to a junction diode
(a) Increases the minority carrier current
(b) Lowers the potential barrier
(c) Raises the potential barrier
(d) Increases the majority carrier current
174.A long straight wire is turned into a loop of radius 10 cm (see figure). If a current of 8 amperes is passed through the loop, then the value of the magnetic field and its direction at the centre $C$ of the loop shall be close to
(a) $5.0 \times 10^{-5}$ Newton/(ampere-meter), upward
(b) $3.4 \times 10^{-5}$ Newton/(ampere-meter), upward
(c) $1.6 \times 10^{-5}$ Newton/(ampere-meter), downward
(d) $1.6 \times 10^{-5}$ Newton/(ampere-meter), upward

175.Turpentine oil is flowing through a tube of length $l$ and radius $r$. The pressure difference between the two ends of the tube is $p$. The viscosity of oil is given by $\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}$ where $v$ is the velocity of oil at a distance $x$ from the axis of the tube. The dimensions of $\eta$ are
(a) $\left[M^{0} L^{0} T^{0}\right]$
(b) $\left[M L T^{-1}\right]$
(c) $\left[M L^{2} T^{-2}\right]$
(d) $\left[M L^{-1} T^{-1}\right]$
176.If a car covers $(2 / 5)^{\text {th }}$ of the total distance with $v_{1}$ speed and $(3 / 5)^{\text {th }}$ distance with $v_{2}$ then average speed is
(a) $\frac{1}{2} \sqrt{v_{1} v_{2}}$
(b) $\frac{v_{1}+v_{2}}{2}$
(c) $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
(d) $\frac{5 v_{1} v_{2}}{3 v_{1}+2 v_{2}}$
177.The velocity of a projectile at the initial point $A$ is $(2 \hat{i}+3 \hat{j}) \mathrm{ms}^{-1}$. Its velocity (in $\mathrm{ms}^{-1}$ ) at point $B$ is
(a) $-2 \hat{i}+3 \hat{j}$
(b) $2 \hat{i}-3 \hat{j}$
(c) $2 \hat{i}+3 \hat{j}$
(d) $-2 \hat{i}-3 \hat{j}$

137. The maximum speed of a car on a road having turn of radius 30 m if the coefficient of friction between the tyres and the road is 0.4 will be $\left(g=9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)$
(a) $9.84 \mathrm{~m} \mathrm{~s}^{-1}$
(b) $10.84 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $7.84 \mathrm{~m} \mathrm{~s}^{-1}$
(d) $5.84 \mathrm{~m} \mathrm{~s}^{-1}$
179.A block of mass 2 kg collide with identical stationary block head on elastically with velocity of $20 \mathrm{~ms}^{-1}$. After collision second block collide with the third block of mass 2 kg initially at rest. If they collide head on perfectly inelastically then the velocity of their combination will be

(a) $5 \mathrm{~ms}^{-1}$
(b) $4 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $10 \mathrm{~m} \mathrm{~s}^{-1}$
(d) $20 \mathrm{~m} \mathrm{~s}^{-1}$
180.A $T$ joint is formed by two identical rods $A$ and $B$ each of mass $m$ and length $L$ in the $X Y$ plane as shown. Its moment of inertia about axis coinciding with $\operatorname{rod} A$ is

(a) $\frac{2 m L^{2}}{3}$
(b) $\frac{m L^{2}}{12}$
(c) $\frac{m L^{2}}{6}$
(d) None of these
