১Deekshå

ABUYAS KCET 2024

Subject	Topic	
$\mathrm{C}+\mathrm{M}+\mathrm{P}$	Complete Syllabus	

1. This paper consists of 180 questions with 3 parts of Chemistry, Mathematics and Physics

- Chemistry: (Q. No. 1 to 60) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- Mathematics: (Q. No. 61 to 120) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- Physics: (Q. No. 121 to 180) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.

2. The OMR sheet for $\mathbf{2 0 0}$ questions is to be used
3. Use of calculators and log tables is prohibited
4. Darken the appropriate bubble using a pen in the OMR sheet provided to you. Once entered, the answer cannot be changed. Any corrections or modifications will automatically draw a penalty of 1 mark
5. No clarification will be entertained during the examination. Doubts in the paper can be reported to the coordinator after the exam
6. If the details in the OMR Sheet are not filled, If the OMR sheet is mutilated, torn, white Ink used, the circles filled and scratched, then the OMR sheet will not be graded

All the best!!

Useful Data

At. Wt.:
$N=14 ; O=16 ; H=1 ; S=32 ; C l=35.5 ; M n=55 ; N a=23 ; C=12 ; A g=108 ; K=39 ; F e=56 ; P b=207$
Physical Constants:
$h=6.626 \times 10^{-34} \mathrm{Js}, \mathrm{N}_{\mathrm{a}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}, \mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Chemistry

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark.

1. If one atom of an element A weighs $6.644 \times 10^{-23} g$, then number of gram-atom in 20 kg of it is
(a) 500
(b) 20
(c) 1000
(d) 2000
2. The uncertainity in the momentum of an electon is $1.0 \times 10^{-5} \mathrm{~kg} \mathrm{~ms}^{-1}$. The uncertainty in its position will be $\left(h=6.62 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$
(a) $1.05 \times 10^{-28} \mathrm{~m}$
(b) $1.0510^{-26} \mathrm{~m}$
(c) $5.27 \times 10^{-30} \mathrm{~m}$
(d) $5.25 \times 10^{-28} \mathrm{~m}$
3. The order of first ionisation energies of the elements $\mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{Na}$ is
(a) $\mathrm{Li}>\mathrm{Be}>\mathrm{B}>\mathrm{Na}$
(b) $\mathrm{Be}>\mathrm{B}>\mathrm{Li}>\mathrm{Na}$
(c) $\mathrm{Na}>\mathrm{Li}>\mathrm{B}>\mathrm{Be}$
(d) $\mathrm{Be}>\mathrm{Li}>\mathrm{B}>\mathrm{Na}$
4. The hybridisation of xenon in $X e F_{2}$ is
(a) $s p^{3}$
(b) $s p^{2}$
(c) $s p^{3} d$
(d) $s p^{3} d^{2}$
5. $\mathrm{H}_{2} \mathrm{O}$ is dipolar, whereas BeF_{2} is not. It is because
(a) $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear
(b) The electronegativity of F is greater than that of O.
(c) $\mathrm{H}_{2} \mathrm{O}$ involves hydrogen bonding whereas BeF_{2} is a discrete molecule
(d) $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} is angular
6. Equal masses of methane and hydrogen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by hydrogen is
(a) $1 / 2$
(b) $8 / 9$
(c) $1 / 9$
(d) $16 / 17$
7. Standard enthalpy and standard entropy changes for the oxidation of ammonia at 298 K are $-382.64 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-145.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. Standard Gibb's energy change for the same reaction at 298 K is
(a) -523.2 kJ mol
(b) -221.1 kJ mol
(c) -339.3 kJ mol
(d) -439.3 kJ mol
8. Heat of neutralization of a strong acid by a strong base is a constant value because
(a) Salt formed does not hydrolyse
(b) Only H^{+}and OH^{-}ions react in every case
(c) The strong base and strong acid react completely
(d) The strong base and strong acid react in aqueous solution
9. $\mathrm{NH}_{4} \mathrm{COONH}_{2(s)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}+\mathrm{CO}_{2(g)}$. If equilibrium pressure is 3 atm for the above reaction, K_{p} for the reaction is
(a) 4
(b) $\frac{4}{27}$
(c) $\frac{1}{27}$
(d) 27
10. Why only $A s^{3+}$ gets precipitated as $A s_{2} S_{3}$ and not $Z n^{2+}$ as $Z n S$ when $H_{2} S$ is passed through an acidic solution containing As^{3+} and Zn^{2+} ?
(a) Solubility product of $A s_{3} S_{3}$ is less than that of ZnS
(b) Enough $A s^{3+}$ are present in acidic medium
(c) Zinc salt does not ionise in acidic medium
(d) Solubility product changes in presence of an acid
11. Which of the following species do not show disproportionation reaction?
(a) ClO^{-}
(b) ClO_{2}^{-}
(c) ClO_{3}^{-}
(d) ClO_{4}^{-}
12. Which one of the following sets of ions represents the collection of isoelectronic species?
(a) $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Mg}^{2+}, \mathrm{Sc}^{3+}$
(b) $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{F}^{-}$
(c) $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{Cl}^{-}$
(d) $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Cl}^{-}$
13. Which of the following ions has the highest value of ionic radius?
(a) O^{2-}
(b) B^{3+}
(c) Li^{+}
(d) F^{-}
14. Acidified sodium fusion extract on addition of ferric chloride solution gives blood red colouration which confirms the presence of:
(a) N and S
(b) S and Cl
(c) S
(d) N
15. Which of the following is least stable?
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(b) $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(c)

(d)

16. The IUPAC name of the compound,

(a) Hydroxypentenoic acid
(b) 4-Hydroxypent-3-enoic acid
(c) 2-Hydroxypent-4-enoic acid
(d) 4-Hydroxy-4-methylpent-3-enoic acid
17. The order of reactivity of halogen in aliphatic substitution reaction is
(a) $B r_{2}>C l_{2}>F_{2}$
(b) $C l_{2}>B r_{2}>F_{2}$
(c) $F_{2}>C l_{2}>B r_{2}$
(d) $F_{2}>B r_{2}>C l_{2}$
18. A plot of $\frac{1}{\mathrm{~T}} \mathrm{~V} \ln k$ for a reaction gives the slope $-1 \times 10^{4} \mathrm{~K}$. The energy of activation for the reaction is (Given $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
(a) $1.202 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $83.14 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $8314 \mathrm{~J} \mathrm{~mol}^{-1}$
(d) $12.02 \mathrm{~J} \mathrm{~mol}^{-1}$
19. Which is a wrong statement?
(a) Rate constant $k=$ Arrhenius constant A: if $\mathrm{E}_{a}=0$
(b) $\ln k$ vs $\frac{1}{\mathrm{~T}}$ plot is a straight line.
(c) $e^{-\mathrm{E}_{a} / \mathrm{RT}}$ gives the fraction of reactant molecules that are activated at the given temp.
(d) Presence of catalyst will not alter the value of E_{a}
20. In a hydrogen-oxygen fuel cell, combustion of hydrogen occurs to
(a) generate heat
(b) remove absorbed oxygen from electrode surface
(c) produce high purity water
(d) create potential difference between the two electrodes.
21. A mixture of two completely miscible non-ideal liquids which distils as such without change in its composition at a constant temperature like a pure liquid. This mixture is known as
(a) Binary liquid mixture
(b) Azeotropic mixture
(c) Eutectic mixture
(d) Ideal mixture
22. The osmotic pressure of 6.84% (mass/volume) solution of cane sugar at 300 K (molecular weight of sugar $=342)$ is
(a) 4 atm
(b) 4.926 atm
(c) 3.55 atm
(d) 2.45 atm
23. The boiling point of benzene is 353.3 K . When 1.80 g of a non-volume solute was dissolved in 90 g of benzene, the boiling point is raised to 354.1 K given that K_{b} for benzene is $2.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, the molar mass of the solute is
(a) 15 g mol
(b) 20 g mol
(c) 25 g mol
(d) 63 g mol
24. $C u_{(s)}+2 A g_{(a q)}^{+} \rightarrow C u_{(a q)}^{2+}+2 A g_{(s)} E_{\text {cell }}^{\circ}=0.46 \mathrm{~V}$. The equilibrium constant of above reaction is
(a) $K_{c}=4.92 \times 10^{25}$
(b) $K_{c}=2.5 \times 10^{18}$
(c) $K_{c}=3.92 \times 10^{15}$
(d) $K_{c}=7.5 \times 10^{12}$
25. Λ_{m}° for $\mathrm{NaCl}, \mathrm{HCl}$ and NaAc are 126.4, 425.9 and $91.0 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ respectively. Λ° for $H A c$ is
(a) $285 \mathrm{~S} \mathrm{~cm}^{-2} \mathrm{~mol}^{-1}$
(b) $400 \mathrm{~S} \mathrm{~cm}^{-2} \mathrm{~mol}^{-1}$
(c) $390.5 \mathrm{~S} \mathrm{~cm}^{-2} \mathrm{~mol}^{-1}$
(d) $125 \mathrm{~S} \mathrm{~cm}^{-2} \mathrm{~mol}^{-1}$
26. Which of the following will not displace hydrogen?
(a) $P b$
(b) $S n$
(c) $B a$
(d) Hg
27. What is the order of a reaction which has a rate expression, rate $=K[A]^{3 / 2}[B]^{-1}$?
(a) 1
(b) 2
(c) $3 / 2$
(d) $1 / 2$
28. The following data were obtained during the first order thermal decomposition of $A_{(g)}$ at constant volume:
$A_{(g)} \rightarrow B_{(g)}+C_{(g)}$

S. No.	Time/s	Total pressure/(atm)
1.	0	0.5
2.	100	0.512

The rate constant is
(a) $2.3 \times 10^{-4} \mathrm{~s}^{-1}$
(b) $4.8 \times 10^{-4} \mathrm{~s}^{-1}$
(c) $3 \times 10^{-4} \mathrm{~s}^{-1}$
(d) $8 \times 10^{-4} \mathrm{~s}^{-1}$
29. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, the rate constant of the reaction is
(a) $1.92 \times 10^{-4} \mathrm{~s}^{-1}$
(b) $3 \times 10^{-2} \mathrm{~s}^{-1}$
(c) $5 \times 10^{-3} \mathrm{~s}^{-1}$
(d) $4.75 \times 10^{-4} \mathrm{~s}^{-1}$
30. When an electrolyte is dissociated in solution, the van't Hoff's factor (i) is,
(a) $=0$
(b) >1
(c) $=1$
(d) <1
31. A galvanic cell is constructed using a redox reaction
$1 / 2 \mathrm{H}_{2}(g)+\mathrm{AgCl}(s) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{Ag}(s)$
It is represented as:
(a) $\mathrm{Pt} / \mathrm{H}_{2}(g) \mid \mathrm{KCl}(a q) \| \mathrm{AgCl}(s) / \mathrm{Ag}(s)$
(b) $\mathrm{Pt} / \mathrm{H}_{2}(g) ; \mathrm{HCl}(a q) \| \operatorname{AgCl}(s) / \mathrm{Ag}(s)$
(c) $\mathrm{Pt} / \mathrm{H}_{2}(g) \mid \mathrm{HCl}(a q) \| \mathrm{AgNO}_{3}(s) / \mathrm{Ag}(s)$
(d) $\mathrm{Ag} / \mathrm{AgCl}(s) \mid \mathrm{KCl}(a q) \| \mathrm{HCl}(a q), \mathrm{H}_{2}(g) / \mathrm{Pt}$
32. Colour of light absorbed by aqueous solution of CuSO_{4} is
(a) Orange red
(b) Bluish green
(c) Yellow
(d) Violet
33. The degenerate orbitals of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ are
(a) $d_{x z}$ and $d_{y z}$
(b) $d_{x^{2}-y^{2}}$ and $d_{x y}$
(c) $d_{x^{2}}$ and $d_{x z}$
(d) $d_{y z}$ and $d_{z^{2}}$
34. The number of unidentate ligands in the complex ion is called
(a) primary valency
(b) oxidation number
(c) EAN
(d) Coordination number
35.

The product ' B ' is
(a)

(b)

(c)

(d)

36. A reaction in which a primary amine is formed from primary amide is called
(a) Hoffmann bromamide reaction
(b) Gabriel phthalimide reaction
(c) Carbylamine reaction
(d) Libermann's nitrosoamine reaction
37. $\mathrm{X} \stackrel{\mathrm{LiAlH}_{4}}{\stackrel{\text { C }}{6}} \mathrm{C}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{O} \xrightarrow{\mathrm{NaBH}_{4}} \mathrm{Y}$
X and Y respectively are
(a) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
38. The strongest acid among the following is:
(a) $\mathrm{CCl}_{3} \mathrm{COOH}$
(b) $\mathrm{FCH}_{2} \mathrm{COOH}$
(c)

(d)

39. Which of the following will be colourless in aqueous solution
I. $T i^{3+}$
II. V^{3+}
III. Cu^{+}
IV. $M n^{2+}$
V. Co^{2+}
VI. $S c^{3+}$
(a) (I), (II), (IV)
(b) (III) and (V)
(c) (II), (IV) and (VI)
(d) (III) and (VI)
40. Magnetic moment of Cr^{2+} is nearest to
(a) $F e^{2+}$
(b) $M n^{2+}$
(c) Co^{2+}
(d) Ni^{2+}
41. The lanthanide contraction is responsible for the fact that
(a) $Z r$ and Y have about the same radius
(b) $Z r$ and $H f$ have about the same radius
(c) Zr and Nb have similar oxidation state
(d) cannot be predicted
42. The oxidation state of Co in $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CN})(e n)_{2}\right]^{2+}$ is
(a) +2
(b) +3
(c) -3
(d) -2
43. Amongst the following the most stable complex is
(a) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(b) $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(c) $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(d) $\left[\mathrm{FeCl}_{6}\right]^{3-}$
44. The IUPAC name of $K_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ is
(a) Potassium tetracyanidonickelate (II)
(b) Potassium tetracyanidonickelate (III)
(c) Potassium tetracyanidonickle (II)
(d) Potassium tetracyanidonickle (III)
45. Identify Z in the following sequence of reactions

(a)

(b)

(c)

(d)

46. Which of the following represents the correct order of increasing boiling points?
(a) 1-Chloropropane <1-Chlorobutane $<$ Chloropropane
(b) 2-Chloropropane <1-Chloropropane <1-Chlorobutane
(c) 2-Chloropropane <1-Chlorobutane <1-Chloropropane
(d) 1-Chlorobutane < 2- Chloropropane<1-Chloroporpane
47. The reaction

is called
(a) Wurtz Fitting reaction
(b) Fittig reaction
(c) Wurtz reaction
(d) Friedel-Crafts reaction
48. Arrange the following compounds in increasing order of solubility in water
(I). Pentan-1-ol
(II) n-Butane
(III) Pentanal
(IV) Ethoxyethane
(a) $($ III $)<$ (IV) $<$ (I) $<$ (II)
(b) (IV) $<$ (II) $<$ (III) $<$ (I)
(c) $($ II $)<($ IV $)<($ III $)<($ I $)$
(d) (II) $<$ (III) $<$ (IV) $<$ (I)
49. Which of the following reactions will not yield phenol?
(a)

(b)

(c)

(iii) H^{+}
(d)

50. On boiling with concentrated $H B r$, ethyl phenyl ether will give
(a) Phenol and ethyl bromide
(b) Bromobenzene and ethanol
(c) Phenol and ethane
(d) Bromobenzene and ethane
51. Which is the most suitable reagent for the following conversion?
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{OH} \longrightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$
(a) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium
(b) DIBAL-H
(c) PCC
(d) $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}-\mathrm{Zn}$ dust
52. Arrange the following compounds in the increasing order of ease of hydrogen bond formation
I. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
II. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
III. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$
IV. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(a) I $<$ III $<$ II $<$ IV
(b) III $<$ I $<$ II $<$ IV
(c) III $<$ II $<$ IV $<$ I
(d) IV $<$ III $<$ II $<$ I
53. What is Z in the following sequence of reactions?

(a)

(b)

(c)

(d)

54. In Clemmensen reduction carbonyl compound is treated with
(a) Zinc amalgam +HCl
(b) Sodium amalgam +HCl
(c) Zinc amalgam + nitric acid
(d) Sodium amalgam $+\mathrm{HNO}_{3}$
55. What is the decreasing order of basicity of primary, secondary and tertiary ethyl amines and NH_{3} ?
(a) $\mathrm{NH}_{3}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(b) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3}$
(c) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}>\mathrm{NH}_{3}$
(d) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3}$
56. What is Z in the following sequence of reactions?

(a) p-Bromoaniline
(b) Bromoacetophenone
(c) p-Bromoacetanilide
(d) o-Bromoacetanilide
57. $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ represent
(a) Primary amine
(b) Secondary amine
(c) Tertiary amine
(d) All of these
58. The rapid interconversion of $\alpha-D-$ glucose and $\beta-D-$ glucose in solution is known as
(a) Racemisation
(b) Asymmetric induction
(c) Fluxional isomerism
(d) Mutarotation
59. The $p H$ value of the solution in which a particular amino acid does not migrate under the incluence of an electric field is called the
(a) Eutectic point
(b) Yielding point
(c) Neutralisation point
(d) Isoelectric point
60. Which of the following statements is not correct regarding the DNA?
(a) It has double stranded β-helix structure
(b) It controls the synthesis of proteins
(c) It has the unique property of replication
(d) It chiefly occurs in the nucleus of cell

Mathematics

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark.
 $60 \times 1=60$

61. On the set of Z of integers define a relation R by a R b if $|a-b| \leq 3$. Then R is
(a) an equivalence relation
(b) reflexive, symmetric but not transitive
(c) symmetric, transitive, but not reflexive
(d) symmetric but neither reflexive not transitive.
62. The function $f: R \rightarrow R$ defined by $f(x)=4+3 \cos x$ is
(a) bijective
(b) one-one but not onto
(c) onto but not one-one
(d) neither one-one nor onto
63. If $m=\sin x+\cos x$ and $n=\sec x+\operatorname{cosec} x$ then n in terms of m is
(a) $\frac{m}{m^{2}-1}$
(b) $\frac{2 m}{1-m^{2}}$
(c) $\frac{2 m}{m^{2}-1}$
(d) $\frac{m}{1-m^{2}}$
64. In a right angled triangle $A B C, \sin ^{2} A+\sin ^{2} B-\cos ^{2} C=$
(a) $\frac{3}{2}$
(b) 2
(c) $\frac{5}{2}$
(d) 1
65. If $\sin A+\sin B+\sin C=3$, then $\cos 2 A+\cos 2 B+\cos 2 C=$
(a) 3
(b) -3
(c) 1
(d) -1
66. The value of $\frac{\cos 3}{2 \cos 2-1}$ is
(a) 1
(b) $\cos 1$
(c) $\sin 1$
(d) 0
67. If $\sin x-\sin y=\frac{1}{2}$ and $\cos x-\cos y=\frac{1}{3}$ then $\cos (x+y)=$
(a) $\frac{1}{3}$
(b) $\frac{1}{4}$
(c) $-\frac{5}{13}$
(d) $\frac{5}{13}$
68. If $1+\cos x+\cos ^{2} x+\ldots \ldots=4+2 \sqrt{3}$, then $\cos x=$
(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{1}{2}$
(c) $\frac{-1}{2}$
(d) 0
69. The second, third and sixth terms of an A.P. Which are distinct consecutive terms of a G.P the common ratio of the G.P is
(a) 1
(b) -1
(c) 3
(d) -3
70. Let $z_{1}=1-i, z_{2}=1+i$ and $z_{3}=-2$, then $z_{1}^{3}+z_{2}^{3}+z_{3}^{3}=$
(a) -4
(b) -12
(c) $3-3 i$
(d) -6
71. In triangle $P Q R, \angle R=\frac{\pi}{2}$. If $\tan \left(\frac{P}{2}\right)$ and $\tan \left(\frac{Q}{2}\right)$ are the roots of the eqaution $a x^{2}+b x+c=0$, then
(a) $a+b=c$
(b) $b+c=a$
(c) $a+c=b$
(d) $b=c$
72. The number of ways in which the letters of the word MOBILE can be arranged so that consonants always occupy odd places is
(a) 12
(b) 36
(c) 72
(d) 144
73. If ${ }^{2 n} C_{n}+{ }^{2 n} C_{n-1}=400$, then ${ }^{2 n+1} C_{n+1}$ equals
(a) 200
(b) 400
(c) 600
(d) 800
74. If $\left[\begin{array}{cc}-2 & 5 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]$, then (x, y) is
(a) $(1,2)$
(b) $(-1,2)$
(c) $(1,-2)$
(d) $(2,1)$
75. If $A B=A$ and $B A=B$, then $B^{2}+B=$
(a) $2 A$
(b) 0
(c) $2 I$
(d) $2 B$
76. If $A=\left[\begin{array}{lll}2 & -3 & 4\end{array}\right], B=\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right], X=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $Y=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$, then $A B+X Y=$
(a) $[20]$
(b) $[24]$
(c) $[22]$
(d) $[28]$
77. Let $A=\left(\begin{array}{cc}200 & 50 \\ 10 & 2\end{array}\right), B=\left(\begin{array}{cc}50 & 40 \\ 2 & 3\end{array}\right)$. Then the value of determinant of the product matrix $A B$ is
(a) 460
(b) 2000
(c) -7000
(d) 3000
78. If $A=\left|\begin{array}{lll}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right|$ and $B=\left|\begin{array}{ll}x & 1 \\ 1 & x\end{array}\right|$, then $\frac{d A}{d x}=$
(a) $3 B+1$
(b) $3 B$
(c) $-3 B$
(d) $1-3 B$
79. If $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$, then $A \operatorname{adj}(A)$ is equal to
(a) $\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]$
(b) $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]$
(d) $\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$
80. The vectors \vec{a}, \vec{b} and $(\vec{a}-\vec{b})$ have same magnitude. Then the angle between the vectors \vec{a} and \vec{b} is
(a) 30°
(b) 150°
(c) 60°
(d) 120°
81. The area of the parallelogram with \vec{a} and \vec{b} as adjacent sides is 20 sq. units. Then the area of the parallelogram having $7 \vec{a}+5 \vec{b}$ and $8 \vec{a}+11 \vec{b}$ as adjacent sides is
(a) 2960 sq. units
(b) 740 sq. units
(c) 1340 sq. units
(d) 3400 sq. units
82. If the vectors $(x-1) \vec{a}+\vec{b}$ and $(3 x+2) \vec{a}-2 \vec{b}$ are collinear vectors, then $x=$
(a) 1
(b) $-\frac{2}{3}$
(c) 2
(d) 0
83. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
(a) 90°
(b) 0°
(c) 30°
(d) 45°
84. A line makes angles $\frac{3 \pi}{17}$ and $\frac{11 \pi}{34}$ with the positive directions of x-axis and z-axis. Then the sine of the angle made by the line with y-axis is
(a) $\frac{1}{\sqrt{2}}$
(b) 1
(c) 0
(d) $\frac{\sqrt{3}}{2}$
85. $x=0, y=0,2 x-y=2$ and $x+3 y-8=0$ are the sides of a quadrilateral. Then the product of the slopes of the diagonal is
(a) -6
(b) $-\frac{2}{3}$
(c) $-\frac{8}{3}$
(d) $-\frac{3}{8}$
86. The point on the circle $x^{2}+y^{2}-80 x-60 y+2100=0$ which is nearest to origin is
(a) $(24,18)$
(b) $(18,24)$
(c) $(20,25)$
(d) $\left(15, \frac{45}{4}\right)$
87. The standard deviation of $x_{1}, x_{2}, x_{3}, x_{4}, \ldots x_{n}$ is 6 . The variance of $2 x_{1},+3,2 x_{2}+3,2 x_{3}+3, \ldots, 2 x_{n}+3$ is
(a) 12
(b) 36
(c) 144
(d) 225
88. The solution of $\frac{6 x}{4 x-1}<\frac{1}{2}$ is
(a) $x<-\frac{1}{8}$
(b) $-\frac{1}{8}<x<\frac{1}{4}$
(c) $x<\frac{1}{8}$ and $x>\frac{1}{4}$
(d) $x>\frac{1}{8}$
89. If the minimum value of an objective function $Z=a x+b y$ occurs at two points $(3,4)$ and $(4,3)$, then
(a) $a+b=0$
(b) $a=b$
(c) $3 a=b$
(d) $a=3 b$
90. $\lim _{x \rightarrow a} \frac{a \sin x-x \sin a}{a x^{2}-x a^{2}}=$
(a) $\frac{\cos a-1}{a^{2}}$
(b) $\frac{a \cos a-a}{a^{2}}$
(c) $\frac{1}{2}$
(d) $\frac{a \cos a-\sin a}{a^{2}}$
91. $\lim _{x \rightarrow \infty} \frac{(n+1)!+n!}{(n+2)!-n!}=$
(a) 1
(b) n
(c) $(n+1)(n+2)$
(d) 0
92. If $f(x)=x^{2}+\frac{1}{x^{2}}$ and $\left(g\right.$ of $f(x)=x^{6}+\frac{1}{x^{6}}$, then $g^{\prime \prime}(1)=$
(a) 0
(b) 3
(c) 6
(d) 1
93. The derivative of $\sin ^{-1} \sqrt{x}$ w.r.t. $\cos ^{-1} \sqrt{1-x}$ is
(a) 1
(b) 0
(c) -1
(d) $\frac{1}{2}$
94. If $x y=\tan (x y)$, then $\frac{d y}{d x}=$
(a) $\frac{y}{x}$
(b) $\frac{x}{y}$
(c) $-\frac{y}{x}$
(d) $-\frac{x}{y}$
95. If $f(x)=\min \left\{x^{2}, 2 x\right\}$, then $f^{\prime}(-1)+f^{\prime}(1)=$
(a) 0
(b) 4
(c) -2
(d) 2
96. $\int \frac{\sec x}{\sec x-\tan x} d x=$
(a) $\sec x-\tan x$
(b) $\sec x+\tan x$
(c) $\tan x-\sec x$
(d) $-(\sec x+\tan x)$
97. $\int \frac{\cos x}{\sin (a+x)} d x=$
(a) $\log \sin (a+x)$
(b) $\cos a \cdot \log \sin (a+x)-x \cos a$
(c) $\cos a \log \sin (a+x)-\cos a$
(d) $\cos a \cdot \log \sin (a+x)+x \sin a$
98. $\int_{0}^{1} \frac{x^{2}+x+2}{\left(1+x^{2}\right)(1+x)} d x=$
(a) $\log 2+\frac{\pi}{2}$
(b) $\log 2-\frac{\pi}{4}$
(c) $\frac{1}{2} \log 2+\frac{\pi}{4}$
(d) $\log 2+\frac{\pi}{4}$
99. $\int_{0}^{\frac{\pi}{2}} e^{\cos x} \sin 2 x d x=$
(a) $2(1-e)$
(b) 2
(c) -2
(d) $2(1+e)$
100. $\int_{1}^{e}\left[(\log x)^{5}+5(\log x)^{4}\right] d x=$
(a) $-e$
(b) e
(c) $\frac{1}{e}$
(d) 1
101. $\int \frac{d x}{1-10 \sin ^{2} x}=$
(a) $\frac{1}{6} \log \frac{3+\tan x}{3-\tan x}+C$
(b) $\frac{1}{6} \log \frac{1-3 \tan x}{1+3 \tan x}+C$
(c) $\frac{1}{6} \log \frac{1+3 \tan x}{1-3 \tan x}+C$
(d) $\frac{1}{6} \log \frac{3-\tan x}{3+\tan x}+C$
102.If $\frac{d y}{d x}=y+3>0$ and $y(0)=2$, then $y(\log 2)$ is equal to
(a) 5
(b) 13
(c) -2
(d) 7
103.The solution of the D.E. $x d y-y d x+x^{2}(x d y+y d x)=0$ is
(a) $x y-\frac{y}{x}=c$
(b) $x^{2} y+y=c$
(c) $x y+\frac{y}{x}=c$
(d) $x y+\frac{x}{y}=c$
102. $\sin ^{2}\left(\cos ^{-1} \frac{1}{3}\right)+\cos ^{2}\left(\sin ^{-1} \frac{1}{3}\right)=$
(a) 1
(b) $\frac{2}{9}$
(c) $\frac{7}{9}$
(d) $\frac{16}{9}$
105.If $\sin ^{-1}\left(\frac{3 \sin 2 \theta}{5+4 \cos 2 \theta}\right)=\frac{\pi}{2}$, then $\tan \theta=$
(a) $\frac{1}{3}$
(b) 1
(c) 3
(d) -1
106.A coin is tossed three times in succession. If E is the event that there are at least two heads and F is the event in which first throw is a head, then $P(E / F)=$
(a) $\frac{3}{4}$
(b) $\frac{3}{8}$
(c) $\frac{1}{2}$
(d) $\frac{1}{8}$
107.In a box there are 2 red, 3 black, and 4 white balls. Out of these, three balls are drawn together. The probability of these being of same colour is
(a) $\frac{1}{84}$
(b) $\frac{1}{21}$
(c) $\frac{5}{84}$
(d) $\frac{2}{21}$
103. A bag ' A ' contains 3 white and 2 black balls. A bag ' B ' contains 2 white and 4 black balls. First a bag is chosen and then a ball is drawn. What is the probability that is a white ball?
(a) $\frac{7}{12}$
(b) $\frac{7}{15}$
(c) $\frac{8}{15}$
(d) $\frac{5}{11}$
109.6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is
(a) $\frac{1}{432}$
(b) $\frac{12}{431}$
(c) $\frac{1}{132}$
(d) None of these
110.The domain of the function $f(x)=\sqrt{2 x-1}+\sqrt{3-2 x}$ is
(a) $\left(\frac{1}{2}, \infty\right)$
(b) $\left(-\infty, \frac{3}{2}\right)$
(c) $\left(\frac{1}{2}, \frac{3}{2}\right)$
(d) $\left[\frac{1}{2}, \frac{3}{2}\right]$
111.If m and n are degree and order of $\left(1+y_{1}^{2}\right)^{2 / 3}=y_{2}$ then the value of $\frac{m+n}{m-n}$ is
(a) 3
(b) 4
(c) 5
(d) 12
112.If $I=\int_{-\pi}^{\pi} \frac{e^{\sin x}}{e^{\sin x}-e^{-\sin x}} d x$ then $I=$
(a) $\frac{\pi}{2}$
(b) 2π
(c) π
(d) $\frac{\pi}{4}$
104. $\int \frac{\sin x \cos x}{\sqrt{1-\sin ^{4} x}} d x=$
(a) $\frac{1}{2} \cos ^{-1}\left(\sin ^{2} x\right)$
(b) $\frac{1}{2} \sin ^{-1}\left(\sin ^{2} x\right)$
(c) $\tan ^{-1}(2 \sin x)$
(d) $\tan ^{-1}\left(\sin ^{2} x\right)$
114.If $y=x^{x^{x^{x^{\prime}}}}$, then $x(1-y \log x) \frac{d y}{d x}=$
(a) x^{2}
(b) y^{2}
(c) $x y^{2}$
(d) $x y$
115.The length of the perpendicular from $(1,6,3)$ to the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is
(a) 3
(b) $\sqrt{11}$
(c) $\sqrt{13}$
(d) 5
116.If $f(x)=\left\{\begin{array}{cl}x \cdot \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$ then at $x=0$, the function is
(a) differentiable but not continuous
(b) continuous but not differentiable
(c) not continuous
(d) continuous and differentiable
117.If $f(x)=\left\{\begin{array}{cl}\frac{\sin 5 x}{x^{2}+2 x} & x \neq 0 \\ k+\frac{1}{2} & x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
(a) 2
(b) $1 / 2$
(c) 1
(d) -4
105. In the interval $(-3,3)$ the function $f(x)=\frac{x}{3}+\frac{3}{x}, x \neq 0$ is
(a) increasing
(b) decreasing
(c) neither increasing nor decreasing
(d) partly increasing and partly decreasing
119.The function $f(x)=x e^{-x}(x \in R)$ attains a maximum value at $x=$
(a) 2
(b) $\frac{1}{e}$
(c) 1
(d) 3
120.Area of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is
(a) 36π
(b) 6π
(c) 6
(d) none of these

Physics

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark.

121.If C be the capacitance and V be the electric potential, then the dimensional formula of $C V^{2}$ is
(a) $\left[M^{1} L^{2} T^{-2} A^{0}\right]$
(b) $\left[M^{1} L^{1} T^{-2} A^{-1}\right]$
(c) $\left[M^{0} L^{1} T^{-2} A^{0}\right]$
(d) $\left[M^{1} L^{-3} T^{1} A^{-1}\right]$
122.The velocity time graph of a particle comes out to be a non-linear curve. The motion is
(a) uniform velocity motion
(b) uniformly accelerated motion
(c) non-uniform accelerated motion
(d) nothing can be said about the motion
123.If (range) $)^{2}$ is 48 times (maximum height) ${ }^{2}$, then angle of projection is
(a) 45°
(b) 60°
(c) 75°
(d) 30°
124.A rocket of mass 120 kg is moving vertically up at $600 \mathrm{~m} / \mathrm{s}$ such that gas is escaping at the rate of 1 kg per second. Find out acceleration of the rocket.
(a) $2 \mathrm{~m} / \mathrm{s}^{2}$
(b) $5 \mathrm{~m} / \mathrm{s}^{2}$
(c) $6 \mathrm{~m} / \mathrm{s}^{2}$
(d) $10 \mathrm{~m} / \mathrm{s}^{2}$
125.A 2 kg mass lying on a table is displaced in the horizontal direction through 50 cm . The work done by normal reaction will be
(a) 10 J
(b) 0
(c) 100 erg
(d) 100 J
126. A light rod of length l has two , masses m_{1} and m_{2} attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is
(a) $\frac{m_{1} m_{2}}{m_{1}+m_{2}} l^{2}$
(b) $\frac{m_{1}+m_{2}}{m_{1} m_{2}} l^{2}$
(c) $\left(m_{1}+m_{2}\right) l^{2}$
(d) $\sqrt{m_{1} m_{2}} l^{2}$
127.The stress-strain graph of a material is shown in the figure. The region in which the material is elastic is

(a) $O A$
(b) $O B$
(c) $O C$
(d) $A C$
128.Two solids P and Q float in water. It is observed that P floats with half of its volume immersed and Q floats with $\left(\frac{2}{3}\right)^{\mathrm{rd}}$ of its volume immersed. The ratio of densities of P and Q is
(a) $\frac{4}{3}$
(b) $\frac{3}{4}$
(c) $\frac{2}{3}$
(d) $\frac{3}{2}$
129. The quantities of heat required to raise the temperature of two copper spheres of radii r_{1} and $r_{2}\left(r_{1}=1.5 r_{2}\right)$ through 1 K are in the ratio of
(a) $\frac{27}{8}$
(b) $\frac{9}{4}$
(c) $\frac{3}{2}$
(d) 1
130.One mole of an ideal gas is taken from A to B from B to C and then back to A. The variation of its volume with temperature for that change is as shown. Its pressure at A is P_{0}, volume is V_{0}. Then, the internal energy
(a) at A is more than at B
(b) at C is less than at B
(c) at B is more than at A
(d) at A and B are equal

131.The mean free path of molecules of a gas, (radius r) is inversely proportional to
(a) r^{3}
(b) r^{2}
(c) r
(d) \sqrt{r}
132.A 10 kg metal block is attached to a spring of spring constant $1000 \mathrm{~N} \mathrm{~m}^{-1}$. A block is displaced from equilibrium position by 10 cm and released. The maximum acceleration of the block is
(a) $200 \mathrm{~m} \mathrm{~s}^{-2}$
(b) $10 \mathrm{~m} \mathrm{~s}^{-2}$
(c) $0.1 \mathrm{~m} \mathrm{~s}^{-2}$
(d) $100 \mathrm{~m} \mathrm{~s}^{-2}$
133.Sound waves transfer
(a) Only energy not momentum
(b) Energy
(c) Momentum
(d) Both energy and momentum
134.A stone weight is 100 N on the surface of the earth. The ratio of its weight at a height of half the radius of the earth to a depth of half the radius of the earth will be approximately
(a) 3.6
(b) 2.2
(c) 1.8
(d) 0.9
135.Water rises in plant fibres due to
(a) capillarity
(b) viscosity
(c) fluid pressure
(d) osmosis
136.If a charge on the body is 1 nC , then how many electrons are removed from the body?
(a) 6.25×10^{27}
(b) 1.6×10^{19}
(c) 6.25×10^{28}
(d) 6.25×10^{9}
137.The potential of the electric field produced by a point charge at any point (x, y, z) is given by $V=3 x^{2}+5$, where, x, y, z are in metres and V is in volts. The intensity of the electric field at $(-2,1,0)$ is
(a) $+17 \mathrm{Vm}^{-1}$
(b) $-17 \mathrm{Vm}^{-1}$
(c) $+12 \mathrm{Vm}^{-1}$
(d) $-12 \mathrm{Vm}^{-1}$
138. A spherical conductor of radius 2 cm is uniformly charged with 3 nC . What is the electric field at a distance of 3 cm from the centre of the sphere?
(a) $3 \times 10^{4} \mathrm{Vm}^{-1}$
(b) $3 \times 10^{6} \mathrm{Vm}^{-1}$
(c) $3 \times 10^{-4} \mathrm{Vm}^{-1}$
(d) $3 \mathrm{Vm}^{-1}$
139.Pick out the statement which is incorrect.
(a) The electric field lines forms closed loop
(b) Electric field lines never intersect
(c) The tangent drawn to a line of force represents the direction of electric field
(d) A negative test charge experiences a force opposite to the direction of the field
140.The equivalent capacitance between A and B as shown in figure is
(a) $\frac{25}{26} \mu \mathrm{~F}$
(b) $1 \mu \mathrm{~F}$
(c) $3 \mu \mathrm{~F}$
(d) $\frac{3}{4} \mu \mathrm{~F}$

141.If $\vec{E}_{a x}$ and $\vec{E}_{e q}$ represents electric field at a point on the axial and equatorial line of a dipole of dipole length $2 a$. If points are at a distance r from the centre of the dipole, for $r \gg a$
(a) $\vec{E}_{a x}=\vec{E}_{e q}$
(b) $\vec{E}_{a x}=-\vec{E}_{e q}$
(c) $\vec{E}_{a x}=-2 \vec{E}_{e q}$
(d) $\vec{E}_{a x}=2 \vec{E}_{e q}$
142. An electric dipole consists of two opposite charges, each of magnitude $1.0 \mu \mathrm{C}$ separated by a distance of 2.0 cm . The dipole is placed in an external field of $10^{5} \mathrm{~N} \mathrm{C}^{-1}$. The maximum torque on the dipole is
(a) $0.2 \times 10^{-3} \mathrm{Nm}$
(b) $1 \times 10^{-3} \mathrm{Nm}$
(c) $2 \times 10^{-3} \mathrm{Nm}$
(d) $4 \times 10^{-3} \mathrm{Nm}$
143.Two infinite parallel metal planes, contain electric charges with charge densities $+\sigma$ and $-\sigma$ respectively and they are separated by a small distance in air. If the permittivity of air is ε_{0}, then the magnitude of the field between the two planes with its direction will be
(a) σ / ε_{0} towards the positively charged plane
(b) σ / ε_{0} towards the negatively charged plane
(c) σ / ε_{0} towards the positively charged plane
(d) 0 and towards any direction
144.A 50 cm long wire and $1 \mathrm{~mm}^{2}$ cross-sectional area carries a current of 4 A when connected to a 2 V battery. The resistivity of the wire is
(a) $2 \times 10^{-7} \Omega \mathrm{~m}$
(b) $5 \times 10^{-7} \Omega \mathrm{~m}$
(c) $4 \times 10^{-6} \Omega \mathrm{~m}$
(d) $1 \times 10^{-6} \Omega \mathrm{~m}$
145.A metallic wire of cross sectional area $4 \mathrm{~mm}^{2}$ carries a current of 3.2 A . If 5×10^{26} number of charge carries per unit volume flow across the wire, then their drift velocity (in ms^{-1}) is
(a) 1
(b) 0.1
(c) 0.01
(d) 10
146.The variation between $V-I$ is shown by the following four graphs,. Which is the $V-I$ graph for heating filament?
(a)

(b)

(c)

(d)

147.A metal wire is subjected to a constant potential difference. When the temperature of the metal wire increases, the drift velocity of the electron in it
(a) increases and the thermal velocity of the electron increases
(b) decreases and the thermal velocity of the electron increases
(c) increases and the thermal velocity of the electron decreases
(d) decreases and the thermal velocity of the electron decreases
148.Three electric bulbs with same voltage ratings of 100 volts but wattage ratings of 40,60 and 100 watts respectively, are connected in series across a volt supply line. If their brightness are B_{1}, B_{2}, B_{3} respectively, then
(a) $B_{1}>B_{2}>B_{3}$
(b) $B_{1}>B_{2}<B_{3}$
(c) $B_{1}=B_{2}=B_{3}$
(d) bulbs will burn out due to the high voltage supply
149.Figure shows a network of currents. The magnitude of currents is shown here. The current I will be
(a) 10 A
(b) 3 A
(c) 13 A
(d) 20 A

150.A charged particle is moving along a magnetic field line. The magnetic force on the particle is
(a) along its velocity
(b) opposite to its velocity
(c) perpendicular to its velocity
(d) zero
151.A proton beam enters a magnetic field of $10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$ normally. If the specific charge of the proton is $10^{11} \mathrm{C} \mathrm{kg}^{-1}$ and its velocity is $10^{9} \mathrm{~ms}^{-1}$, then the radius of the described circle will be
(a) 10 m
(b) 1 m
(c) 0.1 m
(d) 100 m
152. A charged particle with a velocity $2 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$ passes undeflected through electric field and magnetic fields which are mutually perpendicular to each other. The magnetic field is 1.5 T . The magnitude of electric field will be
(a) $1.5 \times 10^{3} \mathrm{NC}^{-1}$
(b) $2 \times 10^{3} \mathrm{~N} \mathrm{C}^{-1}$
(c) $3 \times 10^{3} \mathrm{NC}^{-1}$
(d) $1.33 \times 10^{3} \mathrm{NC}^{-1}$
153. Magnetic field at a distance r from an infinitely long straight conductor, carrying a steady current, varies as
(a) $\frac{1}{r^{2}}$
(b) $\frac{1}{r}$
(c) $\frac{1}{r^{3}}$
(d) $\frac{1}{\sqrt{r}}$
154. A magnetic needle is kept in a non-uniform magnetic field. It experiences
(a) neither a force nor a torque
(b) a torque but not a force
(c) a force but not a torque
(d) a force and a torque
155.The magnetic dipole moment of a current loop is independent of
(a) magnetic field in which it is lying
(b) number of turns
(c) area of the loop
(d) current in the loop
156. A solenoid has core of a material with relative permeability 500 and its windings carry a current of 1 A . The number of turns of the solenoid is 500 per metre. The magnetization of the material is nearly
(a) $2.5 \times 10^{3} \mathrm{Am}^{-1}$
(b) $2.5 \times 10^{5} \mathrm{Am}^{-1}$
(c) $2.0 \times 10^{3} \mathrm{Am}^{-1}$
(d) $2.0 \times 10^{5} \mathrm{Am}^{-1}$
157.The normal magnetic flux passing through a coil changes with time according to the equation $\phi=6 t^{2}-5 t+1$. What is the magnitude of the induced current at $t=0.5 \mathrm{~s}$ if resistance of coil is 10Ω ?
(a) 1.2 A
(b) 0.8 A
(c) 0.6 A
(d) 0.1 A
158. An electron moves on a straight line path $X Y$ as shown. The $a b c d$ is a coil adjacent to the path of electron. What will be the direction of current, if any, induced in the coil?

(a) The current will reverse its direction as the electron goes past the coil
(b) No current will be induced (c) The direction of induced current will be along the path abcd
(d) The direction of induced current will be along the path $a d c b$
159.The rms value of current in a 50 Hz AC circuit is 6 A . The average value of AC current over a cycle is
(a) $6 \sqrt{2}$
(b) $\frac{3}{\pi \sqrt{2}}$
(c) Zero
(d) $\frac{6}{\pi \sqrt{2}}$
160.In an $L C R$ circuit, at resonance
(a) the impedance is maximum
(b) the current leads the voltage by $\pi / 2$
(c) the current and voltage are in phase
(d) the current is minimum
161.A current of 5 A is flowing at 220 V in the primary coil of a transformer. If the voltage produced in the secondary coil is 2200 V and 50% of power is lost, then the current in the secondary will be
(a) 0.25 A
(b) 0.5 A
(c) 2.5 A
(d) 5 A
162. A vessel of height $2 d$ is half-filled with a liquid of refractive index $\sqrt{2}$ and the other half with a liquid of refractive index n. (The given liquids are immiscible). Then the apparent depth of the inner surface of the bottom of the vessel (neglecting the thickness of the bottom of the vessel) will be
(a) $\frac{n}{d(n+\sqrt{2})}$
(b) $\frac{d(n+\sqrt{2})}{n \sqrt{2}}$
(c) $\frac{\sqrt{2} n}{d(n+\sqrt{2})}$
(d) $\frac{n d}{d+\sqrt{2} n}$
163.The speed of light in medium M_{1}, and M_{2} are $1.5 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ and $2 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ respectively. A ray travels from medium M_{1} to the medium M_{2} with an angle of incidence θ. The ray suffers total internal reflection. Then the value of the angle of incidence θ is
(a) $>\sin ^{-1}\left(\frac{3}{4}\right)$
(b) $<\sin ^{-1}\left(\frac{3}{4}\right)$
(c) $=\sin ^{-1}\left(\frac{2}{3}\right)$
(d) $\leq \sin ^{-1}\left(\frac{2}{3}\right)$
164.Radii of curvature of a converging lens are in the ratio $1: 2$. Its focal length is 6 cm and refractive index is 1.5. Then its radii of curvature are \qquad respectively
(a) 9 cm and 18 cm
(b) 6 cm and 12 cm
(c) 3 cm and 6 cm
(d) 4.5 cm and 9 cm
165.A beam of light consisting of red, green and blue colours is incident on a right-angled prism. The refractive index of the material of the prism for the above red, green and blue wavelengths are $1.39,1.44$ and 1.47 respectively. The prism will

(a) not separate the three colours at all
(b) separate the red colour part from the green and blue colours
(c) separate the blue colour part from the red and green colours
(d) separate all the three colours from one another
166. Resolving power of a telescope increases with
(a) Increase in focal length of eye-piece
(b) Increase in focal length of objective
(c) Increase in aperture of eye piece
(d) Increase in aperture of objective
167.Wavefront is the locus of all point, where the particles of the medium vibrate with the same
(a) phase
(b) amplitude
(c) frequency
(d) period
168.To observe diffraction, the size of the obstacle
(a) should be $\lambda / 2$, where λ is the wavelength
(b) should be of the order of wavelengths
(c) has no relation to wavelength
(d) should be much larger that the wavelength
169.Maximum velocity of the photoelectron emitted by a metal is $1.8 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$. Take the value of specific charge of the electron is $1.8 \times 10^{11} \mathrm{Ckg}^{-1}$. Then the stopping potential (in volt) is
(a) 1
(b) 3
(c) 9
(d) 6
170.When a piece of metal is illuminated by a monochromatic light of wavelength λ, then stopping potential is $3 V_{s}$. When same surface is illuminated by light of wavelength 2λ, then stopping potential becomes $V_{s .}$ The value of threshold wavelength for photoelectric emission will be
(a) $(4 \lambda) / 3$
(b) 6λ
(c) 4λ
(d) 8λ
171.Rutherford's atomic model could account for
(a) stability of atoms
(b) origin of spectra
(c) the positively charged central core of an atom
(d) concept of stationery orbits
172. The amount of energy required to separate a hydrogen atom into a proton and an electron is
(a) 1.36 eV
(b) 13.6 eV
(c) 0.136 eV
(d) 136 eV
173. An electron of a stationery hydrogen atom makes the transition from the fifth energy level to the ground level. The velocity that the atom acquired as a result of photon emission will be ($m=$ mass of hydrogen atom, $R=$ Rydberg constant and $h=$ Planck's constant)
(a) $\frac{24 h R}{25 m}$
(b) $\frac{25 h R}{24 m}$
(c) $\frac{25 m}{24 h R}$
(d) $\frac{24 m}{25 h R}$
174.The volume of a nucleus is directly proportional to
(a) A
(b) A^{3}
(c) \sqrt{A}
(d) $A^{1 / 3}$
175.A force between two protons is same as the force between proton and neutron. The nature of the force is
(a) electrical force
(b) weak nuclear force
(c) gravitational force
(d) strong nuclear force
176.In which of the following statements, the obtained impure semiconductor is of p-type?
(a) Germanium is doped with bismuth
(b) Silicon is doped with antimony
(c) Germanium is doped with gallium
(d) Silicon is doped with phosphorus
177.In the following figure, the diodes which are forward biased, are
(A)

(B)

(C)

(D)

(a) (A), (B) and (D)
(b) (C) only
(c) (A) and (C)
(d) (B) and (D)
178. In semiconductors, at room temperature
(a) The conduction band is completely empty
(b) The valence band is partially empty and the conduction band is partially filled
(c) The valence band is completely filled and the conduction band is partially filled
(d) The valence band is completely filled
179.The velocity of electromagnetic radiation in vacuum of permittivity ε_{0} and permeability μ_{0} is given by
(a) $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
(b) $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$
(c) $\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$
(d) $\sqrt{\mu_{0} \varepsilon_{0}}$
180.What is the de Brogile wavelength of the electron accelerated through a potential difference of 100 volt?
(a) $0.1227 \AA$
(b) $12.27 \AA$
(c) $0.001227 \AA$
(d) $1.227 \AA$

