

ABHYAS KCET 2024

Subject	Торіс
C + M + P	Complete Syllabus

Max. Marks: 180

Duration: 3 Hours

1. This paper consists of 180 questions with 3 parts of Chemistry, Mathematics and Physics

- Chemistry: (Q. No. 1 to 60) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- Mathematics: (Q. No. 61 to 120) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- **Physics**: (Q. No. 121 to 180) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- 2. The OMR sheet for 200 questions is to be used
- 3. Use of calculators and log tables is prohibited
- Darken the appropriate bubble using a pen in the OMR sheet provided to you. Once entered, the answer cannot be changed. Any corrections or modifications will automatically draw a penalty of 1 mark
- 5. No clarification will be entertained during the examination. Doubts in the paper can be reported to the coordinator after the exam
- 6. If the details in the OMR Sheet are not filled, If the OMR sheet is mutilated, torn, white Ink used, the circles filled and scratched, then the OMR sheet will not be graded

All the best!!

Useful Data

At. Wt.:

N = 14; O = 16; H = 1; S = 32; Cl = 35.5; Mn = 55; Na = 23; C = 12; Ag = 108; K = 39; Fe = 56; Pb = 207

Physical Constants:

 $h = 6.626 \times 10^{-34} \text{ Js}$, $N_a = 6.022 \times 10^{23} \text{ mol}^{-1}$, $c = 2.998 \times 10^8 \text{ ms}^{-1}$, $m_e = 9.1 \times 10^{-31} \text{ kg}$, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

Chemistry

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark. 60 x 1 = 60

- 1. Of the ions Zn^{2+} , Co^{3+} and Cr^{3+} (At. Nos. Zn = 30, Ni = 28, Cr = 24)
 - (a) Only Zn^{2+} is colourless and Co^{3+} and Cr^{3+} are coloured
 - (b) All three are colourless

)eeksha 🛥 🖾 🗐

- (c) All three are coloured
- (d) Only Co^{3+} is coloured and Zn^{2+} and Cr^{3+} are colourless
- 2. Mercury is liquid at room temperature. This is due to the
 - (a) High viscosity of mercury
 - (b) Weak metallic bonding and weak van der Waals forces
 - (c) Large surface tension of mercury
 - (d) Strong metallic bonding and strong van der Waals forces
- 3. Which of the following are d block elements but not regarded as transition elements?

(a)
$$Cu, Ag, Au$$
 (b) Ru, Rh, Pd (c) Fe, Co, Ni (d) Zn, Cd, Hg

- 4. The correct order of ionic radii of Yb^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is
 - (a) $Yb^{3+} < La^{3+} < Eu^{3+} < Lu^{3+}$ (b) $Lu^{3+} < Eu^{3+} < La^{3+} < Yb^{3+}$ (c) $Lu^{3+} < Yb^{3+} < Eu^{3+} < La^{3+}$ (d) $La^{3+} < Eu^{3+} < Yb^{3+} < Lu^{3+}$
- 5. The hypothetical complex triamminediaquachloridocobalt(III) chloride can be represented as
 - (a) $\left[Co(NH_3)_3 (H_2O)_2 Cl \right] Cl_2$ (b) $\left[Co(NH_3)_3 (H_2O) Cl_3 \right]$ (c) $\left[Co(NH_3)_3 (H_2O)_2 Cl \right]$ (d) $\left[Co(NH_3)_3 (H_2O)_3 \right] Cl_3$
- 6. Which of the following speies represents the example of dsp^2 hybridization?

(a)
$$\left[Fe(CN)_{6}\right]^{3-}$$
 (b) $\left[Ni(CN)_{4}\right]^{2-}$ (c) $\left[Zn(NH_{3})_{4}\right]^{2+}$ (d) $\left[FeF_{6}\right]^{3-}$

7. The compound which does not show paramagnetism is

$$(a) \left[Cu \left(NH_3 \right)_4 \right] Cl_2 \qquad (b) \left[Ag \left(NH_3 \right)_2 \right] Cl \qquad (c) NO \qquad (d) NO_2$$

- 8. Which of the following solutions will exhibit highest boiling point?
 - (a) $0.01 \text{ M Na}_2 \text{SO}_4(aq)$ (b) $0.01 \text{ M KNO}_3(aq)$
 - (c) 0.015 M urea (aq) (d) 0.015 M glucose (aq)
- 9. Osmotic pressure observed when benzoic acid is dissolved in benzene is less than that expected from theoretical considerations. This is because
 - (a) Benzoic acid is an organic solute
 - (b) Benzoic acid has higher molar mass than benzene
 - (c) Benzoic acid gets associated in benzene
 - (d) Benzoic acid gets dissociated in benzene

10. The standard reduction potential values of the elements A, B and C are +0.34 V, -3.05 V and +2.86 V respectively. The order of their oxidising power will be

(a) B > A > C (b) A < B < C (c) B < A < C (d) C < B < A

11. For hydrogen-oxygen fuel cell at one atm and 298 K

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(l);$$

$$\Delta G^{\circ} = -240 \text{ kJ}$$
E° for the cell is approximately,(Given F = 96,500 C)
(a) 1.24 V (b) 1.26 V (c) 2.48 V (d) 2.5 V
12. RCOOR' + H_{2}O_{(HCl)} RCOOH + R'OH what type of reaction is this?

- (a) Second order
 (b) Unimolecular
 (c) Pseudounimolecular
 (d) Third order
 13. Half life period of a reaction is found to be inversely proportional to the cube of the initial concentration. The order of reaction is
 - (a) 4 (b) 3 (c) 5 (d) 2
- 14. The incorrect relation for a first order reaction is

(a)
$$t_{99\%} = 2 \times t_{90\%}$$

(b) $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$
(c) $k = \frac{[R]_0 - [R]}{t}$
(d) $[R] = [R]_0 e^{-kt}$

15. For reaction, $2N_2O_5 \longrightarrow 4NO_2 + O_2$, rate and rate constant are $1.02 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ sec}^{-1}$ and $3.4 \times 10^{-5} \text{ sec}^{-1}$ The concentration of N_2O_5 at that time will be

(a) $1.732 \text{ mol } L^{-1}$ (b) $3 \text{ mol } L^{-1}$ (c) $1.02 \times 10^{-4} \text{ mol } L^{-1}$ (d) $3.2 \times 10^{5} \text{ mol } L^{-1}$

16. A reaction is first order in *A* and second order in *B*. How is the rate affected when the concentrations of both *A* and *B* are doubled?

```
(a) 5 times (b) 8 times (c) 4 times (d) 9 times
```

17. A reaction which is of first order w.r.t reactant A, has a rate constant 0.6min^{-1} . If we start with

 $[A] = 0.5 \text{ mol } L^{-1}$, when would [A] reach the value of 0.05 mol L^{-1}

(a) 0.384 min (b) 0.15 min (c) 3 min (d) 3.84 min

18. If the standard electrode potential of Cu^{2+}/Cu electrode is 0.34 V, what is the electrode potential of 0.01M concentration of Cu^{2+} ?(T = 298K)

19. Molar conductivities at infinite dilution at 293 K for aqueous *HCl*, *CH*₃*COONa* and *NaCl* are 384, 78 and 102 S cm² mol⁻¹ respectively. The molar conductivity of *CH*₃*COOH* at some other dilution is 108 S cm² mol⁻¹ at 293 K. Calculate the degree of ionization of acetic acid at the given dilution. Options:

(a)
$$0.150$$
 (b) 0.6 (c) 0.3 (d) 0.48

beeksha - CET

-				
20.	H_2S a toxic gas with rott	en egg like smell, is use	d for qualitative analysis	s. If the mole fraction of H_2S in
	water at STP is 0.004 , Henry's law constant is			
	(a) 300 atm	(b) 250 atm	(c) 100 atm	(d) 125 atm
21.	A binary liquid solution	is prepared by mixing	n - heptane and ethan	ol. Which one of the following
	statements is correct rega	rding the behaviour of	the solution?	
	(a) The solution form	ed is an ideal solution.		
	(b) The solution is no	n- ideal, showing +ve d	eviation from Raoult's la	IW
	(c) The solution is no	n- ideal, showing -ve de	eviation from Raoult's law	W
	(d) n – Heptane show	vs +ve deviation while e	thanol shows -ve deviat	ion from Raoult's law
22.	45 g of ethylene glycol (G	$(C_2H_6O_2)$ is mixed with 6	00g of water. The freezing	ng point depression is
	(a) 3.5	(b) 2.25	(c) 4.3	(d) 5.4
23.	The decreasing order of o	osmotic pressure of 10 g	glucose $(P_1), 10g$ urea (A	(P_2) and 10 g sucrose (P_3) at 273
	K when dissolved in 250	mL of water separately	is	
	(a) $P_1 > P_2 > P_3$	(b) $P_3 > P_3 > P_1$	(c) $P_2 > P_1 > P_3$	(d) $P_3 > P_2 > P_1$
24.	On analysis a certain con	npound was found to co	ontain 254g of iodine (at	. mass127) and 64g oxygen (at.
	mass16). What is the form	nula of the compound?		
	(a) <i>IO</i>	(b) $I_2 O_4$	(c) $I_2 O_3$	(d) $I_2 O_5$
25.	Nitrogen laser produces	a radiation at a wavele	ngth of 337.1 nm. If the	e number of photons emitted is
	5.6×10^{24} , the power of the	nis laser is		
	(a) 2.3×10^6 J	(b) 3.3×10 ⁶ J	(c) 4.3×10^{-7} J	(d) 5.3×10^{-6} J
26.	Which one of the follow	ing arrangements repre	esents the correct order	of electron gain enthalpy (with
	negative sign) of the give	n atomic species?		
	(a) $Cl < F < S < O$	(b) $O < S < F < Cl$	(c) $S < O < Cl < F$	(d) $F < Cl < O < S$
27.	In the following structur	The of CO_3^{2-} , formal characteristics	rges on carbon atom, do	uble bonded oxygen atom and
	single bonded oxygen ato	om are respectively.		

(a) -1, 0, 0 (b) 1, -2, 0 (c) 0, 0, -1 (d) 0, -1, 0

28. Which of the following pairs is isoelectronic?

(a) Ar and Cl (b) Na^+ and Ne (c) Na^+ and Mg

(d) Mg and Ne

29. A system is provided with 50*J* of heat and work done on the system is 10*J*. The change in internal energy during the process is:

(a) 40*J* (b) 60*J* (c) 80*J* (d) 50*J*

)eeksha 🛥 🖾 🖅

30. Values of ΔH and ΔS for four different reactions are given below:

Reaction	$\Delta H \left(\text{kJ mol}^{-1} \right)$	$\Delta S \left(\text{kJ mol}^{-1} \right)$
Ι	+98.0	+14.8
II	-55.5	-84.8
III	+28.3	-17.0
IV	-40.5	+24.6

On the basis of these values predict which one of these will be spontaneous at all temperatures?

(a) Reaction I (b) Reaction II (c) Reaction III (d) Reaction IV 31. $NH_4COONH_{2(s)} \Longrightarrow 2NH_{3(g)} + CO_{2(g)}$. If equilibrium pressure is 3 atm for the above reaction, K_p for

the reaction is

(a) 4	(b) $\frac{4}{27}$	(c) $\frac{1}{27}$	(d) 27
-------	--------------------	--------------------	--------

32. pH of the solution at $25^{\circ}C$ is 2. If the pH is to be doubled then the hydronium ion concentration of the solution should be

- (a) Halved (b) Doubled
- (c) Increased to 100 times (d) Decreased to 100 times
- 33. In the reaction, $3I_2 + 6NaOH \rightarrow NaIO_3 + 5NaI + 3H_2O$ oxidising agent is
 - (a) NaOH (b) $NaIO_3$ (c) I_2 (d) Nal
- 34. Which of the following is the correct order of radius

(a) $H^- > H > H^+$ (b) $Na^+ > F^- > O^{2-}$ (c) $F^- > O^{2-} > Na^+$ (d) $Al^{3+} > Mg^{2+} > N^{3-}$

35. The set representing the correct order of first ionization potential is

(a) K > Na > Li	(b) Be > Mg > Ca	(c) Ge > Si > C	(d) B > C > N
-----------------	------------------	-----------------	---------------

36. The correct statement is

- (a) The extent of actinoid contraction is almost the same as lanthanoid contraction.
- (b) Ce^{+4} in aqueous solution is not known.
- (c) The earlier members of lanthanoid series resemble calcium in their chemical properties.
- (d) In general, lanthanoids and actinoids do not show variable oxidation states.

37. The correct order of reactivity towards electrophilic substitution is

- (a) Phenol>benzene> chlorobenzene>benzoic acid
- (b) Benzoic acid> chlorobenzene >benzene >phenol
- (c) Phenol > chlorobenzene> benzene > benzoic acid
- (d) Benzoic acid > Phenol> benzene > chlorobenzene
- 38. Which of the following pairs of elements cannot form an alloy?
 - (a) Zn, Cu (b) Fe, Hg (c) Fe, C (d) Hg, Na

39. Which among the following is the strongest ligand?

(a) CN^{-} (b) CO (c) NH_3 (d) en

- 40. Cationic complex is
 - (a) hexa amino platinum chloride (b) potassium ferrocyanide
 - (c) sodium argentocyanide (d) nickel carbonyl
- 41. The compound that exhibit geometrical isomerism are
 - (I) $[Pt(en)Cl_2]$ (ii) $[Pt(en)_2]Cl_2$ (iii) $[Pt(en)_2Cl_2]Cl_2$ (iv) $[Pt(NH_3)_2Cl_2]$ (a) 1, 2(b) 1, 3(c) 2, 4(d) 3, 4

42. The product of reaction of alcoholic silver nitrite with ethyl bromide is

- (a) Ethane (b) Ethene (c) Ethyl alcohol (d) Nitroethane
- 43. In which case formation of butane nitrile is possible?

(a)
$$C_3H_7Br + KCN$$
 (b) $C_4H_9Br + KCN$ (c) $C_3H_7OH + KCN$ (d) $C_4H_9OH + KCN$

44. An alkyl chloride produces a single alkene on reaction with sodium ethoxide and ethanol. The alkene further undergoes hydrogenation to yield 2-methylbutane. Identify the alkyl chloride from the following

- (a) $ClCH_2C(CH_3)_2CH_3$ (b) $ClCH_2CH_2CH_2CH_3$ (c) $ClCH_2CH(CH_3)CH_2CH_3$ (d) $CH_3C(Cl)(CH_3)CH_2CH_3$
- 45. The compound having longest C-Cl bond is

- 46. An organic compound (*A*) reacts with sodium metal and forms (*B*). On heating with conc. $H_2SO_4(A)$ gives diethylether. (*A*) and (*B*) are respectively
 - (a) *C*₂*H*₅*OH* and *C*₂*H*₅*ONa*(b) *C*₃*H*₇*OH* and *CH*₃*ONa*(c) *CH*₃*OH* and *CH*₃*ONa*(d) *C*₄*H*₉*OH* and *C*₄*H*₉*ONa*

47. Identify Z in the following series: $C_2H_5OH \xrightarrow{PBr_3} X \xrightarrow{alc. KOH} Y \xrightarrow{(i) H_2SO_4} Z$

(a) $CH_2 = CH_2$ (b) $CH_3 - CH_2OH$ (c) $CH_3 - CH_2 - O - CH_2 - CH_3$ (d) $CH_3 - CHO$ beeksha - CET

48. What is the major product obtained when phenol is treated with chloroform and aqueous alkali?

(a) Reacts to form 2, 4- dinitrophenylhydrazone

(b) Reacts with Tollens' reagent to form silver mirror

- (c) Reacts with $I_2/NaOH$ to form iodoform
- (d) On oxidation with alkaline KMnO₄ followed by hydrolysis gives benzoic acid
- 50. Propanal on treatment with dilute sodium hydroxide forms

(a)
$$CH_3CH_2CH_2CH_2CH_2CH_0$$

(c) $CH_3CH_2CH(OH)CH(CH_3)CHO$

(d) CH_3CH_2COONa

51. Which of the following is the strongest acid?(a) *CF*₃*COOH*(b) *CBr*₃*COOH*

(c) CH_3COOH (d) CCl_3COOH

(b) $CH_3CH_2CH(OH)CH_2CH_2CHO$

52. Identify C

eeksha 🛥 🖾 🚍

53. Which of the following is least basic?

54. Which amine amongst the following will positively answer the carbylamines test (i.e., heating with *CHCl*₃ and *KOH*)?

(a)
$$C_6H_5 - NH - CH_3$$

(b) $CH_3 - C_6H_4 - NH_2$
(c) $C_6H_5 - NH - C_4H_9$
(d) $C_6H_5 - N(C_2H_5)_2$

55. Which one of the following is an essential amino acid?

- (a) Lysine (b) Tyrosine (c) Proline (d) Glycine
- 56. Which of the following is a non-reducing sugar?(a) Galactose(b) Glucose(c) Fructose(d) Sucrose
- 57. In DNA, the complementary bases are
 - (a) Uracil and adenine: cytosine and guanine
 - (b) Adenine and thymine: guanine and cytosine
 - (c) Adenine and thymine: Guanine and uracil
 - (d) Adenine and guanine: thymine and cytosine
- 58. Which of the following is least stable?
 - (a) $CH_3 CH_2 \overset{+}{C}H_2$ (b) $CH_3 \overset{+}{C}H CH_2 CH_3$

(c)
$$CH_3 - \overset{+}{C} - CH_3$$

 $CH_3 - \overset{+}{C} H_3$ (d) $(CH_3)_3 C - \overset{+}{C} H - C_6 H_5$

59. Tetrabromoethane on treatment with alcoholic zinc gives

60. Identify the name of the reaction which is not correctly matched with the reaction

(a)
$$CH_3CH_2CH_2CH_3 \xrightarrow{Anhy.AlCl_3/HCl} CH_3CH(CH_3)CH_3$$
 Isomerization
(b) $CH_4 + O_2 \xrightarrow{Mo_2O_3 \Delta} HCHO + H_2O$ Controlled oxidation
(c) $CH_4 + Cl_2 \longrightarrow CH_3Cl + HCl$ Chlorination
(d) $C_6H_{14} \xrightarrow{Cr_2O_3/V_2O_5,773K} C_6H_6$ Isomerization

Mathematics

on the second se

		<u>Iviat</u>	<u>Hematics</u>			
Mu	Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative					
ma	nrk.			60 x 1 = 60		
61.	If R is a relation on the	e set N , defined by $\{(x, y)\}$	(x): 2x - y = 10, then <i>R</i> is	is		
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these		
62.	If $A = \{1, 2, 3\}$ and $B =$	$\{2, 3, 4\}$, then which of the theorem is the transformed equation of the second seco	ne following relations is	a function from <i>A</i> to <i>B</i> ?		
	(a) $\{(1,2), (2,3), (3, 3), ($,4),(2,2)}	(b) $\{(1, 2), (2, 3), (1, 2), (2, 3), (1, 2), (2, 3), (1, 2), (2, 3), (1, 2), (2, 3),$, 3)}		
	(c) $\{(1,3), (2,3), (3,$	3)}	(d) $\{(1,1), (2,3), (3,3)\}$, 4)}		
63.	The function $f:[0,\infty)$.	\rightarrow [0, ∞) defined by $f(x)$	$=\frac{2x}{1+2x}$			
	(a) one-one and on	to	(b) one-one but no	t onto		
	(c) not one-one but	onto	(d) neither one-one	e nor onto		
64.	The domain of the real	function $f(x) = \frac{1}{\sqrt{4-x^2}}$	is			
	(a) The set of all re-	al numbers	(b) The set of all po	ositive real numbers		
	(c) (-2, 2)		(d) [-2, 2]			
65.	The value of $\frac{\cot 54^{\circ}}{\tan 36^{\circ}} + \frac{1}{2}$	$\frac{\tan 20^\circ}{\cot 70^\circ}$ is				
	(a) 0	(b) 2	(c) 3	(d) 1		
66.	If $\tan \theta = \frac{1}{\sqrt{7}}$, then $\frac{(\cos \theta)}{(\cos \theta)}$	$\frac{\sec^2 \theta - \sec^2 \theta}{\sec^2 \theta + \sec^2 \theta}$ is equal to)			
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{5}{4}$	(d) 2		
67.	If $A = 35^{\circ}, B = 15^{\circ}$ and	$C = 40^{\circ}$, then $\tan A \tan B$	$+\tan B \tan C + \tan C \tan A$	is equal to		
	(a) 0	(b) 1	(c) 2	(d) 3		
68.	The value of $\sin^{-1} \{\cos^{-1} \}$	(4095°) } is				
	(a) $-\frac{\pi}{3}$	(b) $\frac{\pi}{6}$	(c) $-\frac{\pi}{4}$	(d) $\frac{\pi}{4}$		
69.	If $z = \frac{\left(\sqrt{3}+i\right)^3 \left(3i+4\right)^2}{\left(8+6i\right)^2}$, then $ z $ is equal to				
	(a) 8	(b) 2	(c) 5	(d) 4		
70.	If gas is being pumped	into a spherical balloon a	at the rate of $30 \text{ ft}^3 / \min$. Then, the rate at which the		
	radius increases, when it reaches the value 15 ft is					
	. 1	a. 1.,	. 1	(n. 1		

(a)
$$\frac{1}{15\pi}$$
 ft/min (b) $\frac{1}{30\pi}$ ft/min (c) $\frac{1}{20}$ ft/min (d) $\frac{1}{25}$ ft/min

Deeksha - CET

71. The maximum value of $f(x) = \frac{x}{4+x+x^2}$ on [-1, 1] is

(a)
$$-\frac{1}{3}$$
 (b) $-\frac{1}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{6}$

72. If $f(x) = \begin{cases} 0, & x = 0 \\ x - 3, & x > 0 \end{cases}$, then the function f(x) is

- (a) Increasing when $x \ge 0$
- (b) Strictly increasing when x > 0
- (c) Strictly increasing at x = 0
- (d) Not continuous at x = 0 and so it is not increasing when x > 0
- 73. The number of permutations of the letters of the word CONSEQUENCE in which all the three E's are together is

(a) 9!3! (b)
$$\frac{9!}{2!2!}$$
 (c) $\frac{9!}{2!2!3!}$ (d) $\frac{9!}{2!3!}$

74. If 3 and 4 are intercepts of a line $L \equiv 0$, then the distance of $L \equiv 0$ from the origin is

(a) 5 units (b) 12 units (c)
$$\frac{5}{12}$$
 units (d) $\frac{12}{5}$ units

75. Compute the shortest distance between the circle $x^2 + y^2 - 10x - 14y - 151 = 0$ and the point (-7, 2).

(a) 0 (b) 1 (c) 2 (d) 4

76. If a line in the space makes angles α , β and γ with the coordinate axes, then

$$\cos 2\alpha + \cos 2\beta + \cos 2\gamma + \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma \text{ equals}$$
(a) -1
(b) 0
(c) 1
(d) 2

77. The foot of the perpendicular from (2, 4, -1) to the line $x+5=\frac{1}{4}(y+3)=-\frac{1}{9}(z-6)$ is

(a)
$$(-4, 1, -3)$$
 (b) $(4, -1, -3)$ (c) $(-4, -1, 3)$ (d) $(-4, -1, -3)$

78. Given, $p = 3\hat{i} + 2\hat{j} + 4\hat{k}$, $a = \hat{i} + \hat{j}$, $b = \hat{j} + \hat{k}$, $c = \hat{i} + \hat{k}$ and p = xa + yb + zc, then x, y and z are respectively,

(a)
$$\frac{3}{2}, \frac{1}{2}, \frac{5}{2}$$
 (b) $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ (c) $\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$ (d) $\frac{1}{2}, \frac{5}{2}, \frac{3}{2}$

79. If $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$ and $\hat{i} + \hat{k}$ are the position vectors of the vertices of a $\triangle ABC$ taken in order, then $\angle A$ is equal to

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{5}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{3}$

80. |a| = |b| = 5 and the angle between a and b is $\frac{\pi}{4}$. The area of the triangle constructed on the vectors a - 2b and 3a + 2b is (a) 50 (b) $50\sqrt{2}$ (c) $\frac{50}{\sqrt{2}}$ (d) 100

beeksha - CET **CET Section** 81. $\lim_{x \to \infty} \left(\frac{x^3}{3x^2 - 4} - \frac{x^2}{3x + 2} \right)$ is equal to (a) $-\frac{1}{4}$ (b) $-\frac{1}{2}$ (d) $\frac{2}{0}$ (c) 0 82. $\lim_{x \to 0} \frac{a^x + a^{-x} - 2}{x^2}$ is equal to (a) $(\log a)^2$ (c) 0 (b) $\log a$ (d) none of these 83. The value of $\lim_{x \to 0} \frac{\sin^2 x + \cos x - 1}{x^2}$ is (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (a) 1 (d) 0 84. If $f(x) = \begin{cases} \frac{3\sin \pi x}{5x}, & x \neq 0\\ 2k, & x = 0 \end{cases}$ is continuous at x = 0, then the value of k is (b) $\frac{3\pi}{10}$ (c) $\frac{3\pi}{2}$ (d) $\frac{3\pi}{5}$ (a) $\frac{\pi}{10}$ 85. The number of points of $f(x) = |x-1| + |x-3| + \sin x$, $x \in [0, 4)$, where f(x) is not differentiable, is (a) 0 (b) 1 (c) 2 (d) 3 86. If $y = f(x^2 + 2)$ and f'(3) = 5, then $\frac{dy}{dx}$ at x = 1 is (a) 5 (b) 25 (c) 15 (d) 10 87. If $y = \sec(\tan^{-1} x)$, then $\frac{dy}{dx}$ at x = 1 is equal to (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$ (c) 1 (d) √2 88. If $y = e^{ax} \sin bx$, then $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + a^2y$ is equal to (c) $-b^2 y$ (a) 0 (b) 1 (d) –by 89. $\frac{d}{dx} \log_e e^{\sin(x^2)}$ is equal to (a) $2\cos(x^2)$ (b) $2\cos x$ (d) $2x\cos(x^2)$ (c) $2x \cdot \cos x$ 90. Five persons A, B, C, D and E are in queue of a shop. The probability that A and E are always

90. Five persons *A*, *B*, *C*, *D* and *E* are in queue of a shop. The probability that *A* and *E* are always together, is

(a) $\frac{1}{4}$	(b) $\frac{2}{3}$
(c) $\frac{2}{5}$	(d) $\frac{3}{5}$

91. The probability of choosing randomly a number c from the set $\{1, 2, 3, ..., 9\}$ such that the quadratic

equation $x^2 + 4x + c = 0$ has real roots, is

(a) $\frac{1}{9}$ (b) $\frac{2}{9}$ (c) $\frac{3}{9}$ (d) $\frac{4}{9}$

92. If four persons independently solve a certain problem correctly with probabilities $\frac{1}{2}, \frac{3}{4}, \frac{1}{4}$ and $\frac{1}{8}$. Then,

the probability that the problem is solved correctly by atleast one of them, is

(a)
$$\frac{235}{256}$$
 (b) $\frac{21}{256}$ (c) $\frac{3}{256}$ (d) $\frac{253}{256}$

93. An urn contains 3 red and 5 blue balls. The probability that two balls are drawn in which 2nd ball drawn is blue without replacement is

(a)
$$\frac{5}{16}$$
 (b) $\frac{5}{56}$ (c) $\frac{5}{8}$ (d) $\frac{20}{56}$

94. The set of values of x satisfying $3(2-x) \ge 2(1-x)$

(a)
$$\{x : x \in R, x \le 4\}$$
 (b) $\{x : x \in R, x < 4\}$ (c) $\{x : x \in R, x \ge 4\}$ (d) none of these

95. If given constraints are $5x + 4y \ge 2$, $x \le 6$ and $y \le 7$, then the maximum value of the function z = x + 2y is

(d) -3

(a) 13 (b) 14 (c) 15 (d) 20
If
$$A = \begin{bmatrix} 3 & x-1 \end{bmatrix}$$
 is a symmetric matrix, then the value of x is

(a) 4 (b) 3 (c) -4

97. If
$$U = \begin{bmatrix} 2 - 3 & 4 \end{bmatrix}$$
, $X = \begin{bmatrix} 0 & 2 & 3 \end{bmatrix}$, $V = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$ then $UV + XY$ is equal to
(a) $\begin{bmatrix} 20 \end{bmatrix}$ (b) 20 (c) $\begin{bmatrix} -20 \end{bmatrix}$ (d) -20

98. $\int (x+1)(x+2)^7 (x+3) dx$ is equal to

96.

(a)
$$\frac{(x+2)^{10}}{10} - \frac{(x+2)^8}{8} + C$$

(b) $\frac{(x+1)^2}{2} - \frac{(x+2)^8}{8} - \frac{(x+3)^2}{2} + C$
(c) $\frac{(x+2)^{10}}{10} + C$
(d) $\frac{(x+2)^9}{9} - \frac{(x+2)^7}{7} + C$

99.
$$\int \frac{2dx}{\left(e^x + e^{-x}\right)^2} \text{ is equal to}$$
(a) $\frac{-e^x}{e^{-x} + e^x} + C$
(b) $\frac{e^x}{x+1} + C$
(c) $\frac{xe^x}{x+1} + C$
(d) $e^x \left(\frac{x-1}{x+1}\right) + C$

100. $\int \frac{e^x}{(2+e^x)(e^x+1)} dx$ is equal to (a) $\log\left(\frac{e^{x}+1}{e^{x}+2}\right) + C$ (b) $\log\left(\frac{e^{x}+2}{e^{x}+1}\right) + C$ (c) $\left(\frac{e^{x}+1}{e^{x}+2}\right) + C$ (d) $\left(\frac{e^{x}+2}{e^{x}+1}\right) + C$ 101. The value of $\int_{0}^{1} \frac{x^4 + 1}{x^2 + 1} dx$ is (a) $\frac{1}{6}(3-4\pi)$ (b) $\frac{1}{6}(3\pi+4)$ (c) $\frac{1}{6}(3+4\pi)$ (d) $\frac{1}{6}(3\pi - 4)$ 102.If $f(x) = \begin{cases} 2x^2 + 1, & x \le 1 \\ 4x^3 - 1, & x > 1 \end{cases}$, then $\int_0^2 f(x) dx$ is equal to (a) $\frac{47}{2}$ (b) $\frac{50}{2}$ (d) $\frac{47}{2}$ (c) $\frac{1}{2}$ 103. The solution of the differential equation $x\frac{dy}{dx} + y = x\cos x + \sin x$, given that y = 1 when $x = \frac{\pi}{2}$, is (a) $y = \sin x - \cos x$ (b) $y = \cos x$ (c) $y = \sin x$ (d) $y = \sin x + \cos x$ 104. The slope at any point of a curve y = f(x) is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1, 1). The equation of the curve is (b) $y = -x^3 - 2$ (c) $y = 3x^3 + 4$ (d) $y = -x^3 + 2$ (a) $y = x^3 + 2$ 105. The interesting factor of the differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$, is (a) $\sin x$ (b) $\sec x$ (c) $\tan x$ (d) $\cos x$ 106. Consider an infinite geometric series with first term 'a' and common ratio 'r'. If the sum 4 and the second term is $\frac{3}{4}$, then (a) $a = 2, r = \frac{3}{8}$ (b) $a = \frac{4}{7}, r = \frac{3}{7}$ (c) $a = \frac{3}{2}, r = \frac{1}{2}$ (d) $a = 3, r = \frac{1}{4}$ 107. The angle between the lines 2x = 3y = -z and 6x = -y = -4z is (a) 0° (b) 45° (c) 90° (d) 30° 108. The distance of the point (-2, 4, -5) from the line $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ is (a) $\frac{\sqrt{37}}{10}$ (b) $\sqrt{\frac{37}{10}}$ (c) $\frac{37}{\sqrt{10}}$ (d) $\frac{37}{10}$ 109. A straight line passes through the points (5,0) and (0,3). The length of perpendicular to the point (4,4)

on the line is

(a)
$$\frac{15}{\sqrt{34}}$$
 (b) $\frac{\sqrt{17}}{2}$ (c) $\frac{17}{2}$ (d) $\sqrt{\frac{17}{2}}$

👌 Deeksha 🛥 😋 🖅

110. The eccentricity of the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$ (b) $\frac{2\sqrt{5}}{4}$ (a) $\frac{2\sqrt{5}}{5}$ (c) $\frac{2\sqrt{13}}{\epsilon}$ (d) $\frac{2\sqrt{13}}{4}$ 111. The number of terms in the expansion of $(x^2 + y^2)^{25} - (x^2 - y^2)^{25}$ after simplification is (c) 26 (a) 0 (b) 13 (d) 50 112. If *A* and *B* are finite sets and $A \subset B$, then (b) $n(A \cap B) = n(B)$ (c) $n(A \cup B) = n(B)$ (a) $n(A \cup B) = n(A)$ (d) $n(A \cap B) = \phi$ 113. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then the value of is equal to $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ (c) $-\frac{3}{2}$ (d) $\frac{3}{2}$ (a) 1 (b) 3 114. The value of integral $\int_{-\pi/4}^{\pi/4} \log(\sec\theta - \tan\theta) d\theta$ is (b) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$ (a) 0 (c) π 115. $\int e^{\sin x} \cdot \left(\frac{\sin x + 1}{\sec x}\right) dx$ is equal to (a) $\sin x \cdot e^{\sin x} + c$ (b) $\cos x \cdot e^{\sin x} + c$ (c) $e^{\sin x} + c$ (d) $e^{\sin x} (\sin x + 1) + c$ 116.If $y = (\tan^{-1} x)^2$, then $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1$ is equal to (a) 4 (b) 0 (c) 2 (d) 1 117. The value of $\sin(2\sin^{-1}0.8)$ is equal to (b) sin1.2° (c) sin1.6° (d) 0.96 (a) 0.48 118. The symmetric part of the matrix $A = \begin{pmatrix} 1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7 \end{pmatrix}$ $(a) \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & -2 \\ -1 & -2 & 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 4 & 3 \\ 2 & 8 & 0 \\ 3 & 0 & 7 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & -2 & 1 \\ 2 & 0 & 2 \\ -1 & 2 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 4 & 3 \\ 4 & 8 & 0 \\ 3 & 0 & 7 \end{pmatrix}$ 119.If A is a matrix of order 3, such that A(adjA) = 10I, then |adjA| =(b) 10 (a) 1 (c) 100 (d) 101 120. Area of region bounded by the curve $y = \cos x, x = 0$ and $x = \pi$ is (a) 2 sq.units (b) 4 sq.units (c) 3 sq.units (d) 1 sq.units

Physics

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark. 60 x 1 = 60

121. The distance of the centres of moon and earth is D. The mass of earth is 81 times the mass of the moon.

At what distance from the centre of the earth, the gravitational force will be zero?

(a)
$$\frac{D}{2}$$
 (b) $\frac{2D}{3}$ (c) $\frac{4D}{3}$ (d) $\frac{D}{10}$

122. The stress-strain graph for a metal wire is as shown in the figure. In the graph, the region in which

Hooke's law is obeyed, the ultimate strength and fracture points are represented by

(a)
$$OA, C, D$$
 (b) OB, D, E (c) OA, D, E (d) OB, C, D

123. During summersault, a swimmer bends his body to

eeksha 🛥 🍘

- (a) Increase moment of Inertia (b) Decrease moment of Inertia
- (c) Decrease the angular momentum (d) Reduce the angular velocity
- 124.A large open tank has two holes in the wall. One is a square hole of side L at a depth y from the top and the other is a circular hole of radius R at a depth 4y from the top. When the tank is completely filled with water, the quantities of water flowing out per second from both holes are the same. Then, Ris equal to

(a)
$$\frac{L}{\sqrt{2\pi}}$$
 (b) $2\pi L$ (c) L (d) $\frac{L}{2\pi}$

125.A clock with a metal pendulum beating seconds keeps correct time at 0°C. If it loses 12.5s a day at

25°C, the coefficient of linear expansion of metal pendulum is

(a)
$$\frac{1}{86400}$$
 / °C (b) $\frac{1}{43200}$ / °C (c) $\frac{1}{14400}$ / °C (d) $\frac{1}{28800}$ / °C

126. The pressure is P, volume V and temperature T of a gas in jar A and the other gas in jar B is at pressure P, volume V/4 and temperature 2T, then the ratio of the number of molecules in jar A and B will be

127. If ΔU and ΔW represent the increase in internal energy and work done by the system respectively in a thermodynamical process, which of the following is true?

- (a) $\Delta U = -\Delta W$, in an adiabatic process
- (b) $\Delta U = \Delta W$, in an isothermal process
- (c) $\Delta U = \Delta W$, in adiabatic process
- (d) $\Delta U = -\Delta W$, in an isothermal process

128.A particle is executing simple harmonic motion with frequency f. The frequency at which its kinetic

energy change into potential energy is

(a)
$$\frac{f}{2}$$
 (b) f (c) 2f (d) 4f

129. The speed of longitudinal wave in a wire is 100 times the speed of transverse wave. If Young's modulus of the wire material is 1×10^{11} Nm⁻² then the stress in the wire is

(a)
$$1 \times 10^7 \text{ Nm}^{-2}$$
 (b) $1.5 \times 10^7 \text{ Nm}^{-2}$ (c) $1 \times 10^{11} \text{ Nm}^{-2}$ (d) $1.5 \times 10^{11} \text{ Nm}^{-2}$

130. Two equally charged, identical metal spheres A and B repel each other with a force 'F'. The spheres are kept fixed with a distance 'r' between them. A third identical, but uncharged sphere C is brought in contact with A and then placed at the mid-point of the line joining A and B. The magnitude of the net electric force on C is

(a)
$$F$$
 (b) $\frac{3F}{4}$ (c) $\frac{F}{2}$ (d) $\frac{F}{4}$

131. If the electric flux entering and leaving an enclosed surface respectively ϕ_1 and ϕ_2 then the electric charge inside the surface will be

(a)
$$(\phi_1 + \phi_2)\varepsilon_0$$
 (b) $(\phi_2 - \phi_1)\varepsilon_0$ (c) $(\phi_1 - \phi_2)/\varepsilon_0$ (d) $(\phi_2 - \phi_1)/\varepsilon_0$

132. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge

Q and area A, is

(a) independent of the distance between the plates

(b) linearly proportional to the distance between the plates

(c) inversely proportional to the distance between the plates

(d) proportional to the square root of the distance between the plates

133.Electric lines of force about a negative point charge are

(a) Circular anticlockwise	(b) Circular clockwise
----------------------------	------------------------

(c) Radial, inwards (d) Radial, outwards

134. Equal charges are given to two spheres of different radii. The potential will be

(a) more on smaller sphere (b) more on bigger sphere

(c) equal on both sphere (d) none of these

135. Two points *P* and *Q* are maintained at the potentials of 10V and -4V, respectively. The work done in moving 100 electrons from *P* to *Q* is

(a) 9.6×10^{-17} J (b) -2.24×10^{-16} J (c) 2.24×10^{-16} J (d) -9.6×10^{-17} J

136.Equal charges *q* are placed at the four corners, *A*,*B*,*C*,*D* of a square of length *a*. The magnitude of the

force on the charge at *B* will be

(a)
$$\frac{3q^2}{4\pi\varepsilon_0 a^2}$$
(b)
$$\frac{4q^2}{4\pi\varepsilon_0 a^2}$$
(c)
$$\left(\frac{1+2\sqrt{2}}{2}\right)\frac{q^2}{4\pi\varepsilon_0 a^2}$$
(d)
$$\left(2+\frac{1}{\sqrt{2}}\right)\frac{q^2}{4\pi\varepsilon_0 a^2}$$

Deeksha House

beeksha - CEI

137.Which of the following graphs shows the variation of electric field E due to a hollow spherical conductor of radius R as a function of distance from the centre of the spherical conductor?

138.Two wires have lengths, diameters and specific resistances all in the ratio of 1:2. The resistance of the first wire is 10 ohm. Resistance of the second wire in ohm will be

(a) 5 (b) 10 (c) 20 (d) infinite

139.A primary cell has an e.m.f. of 1.5 volt, when short-circuited it gives a current of 3 ampere. The internal resistance of the cell is

(a) 4.5 ohm (b) 2 ohm (c) 0.5 ohm (d) 1/4.5 ohm

140. How much heat is developed in 210 watt electric bulb in 5 minutes? (Chemical equivalent of heat

 $= 4.2 \text{ JC}^{-1}$)

(a) 30000 cal (b) 22500 cal (c) 15000 cal (d) 7500 cal

141.Drift velocity of electrons is due to

(a) Motion of conduction electrons due to random collisions.

(b) Motion of conduction electrons due to electric field \vec{E} .

(c) Repulsion to the conduction electrons due to inner electrons of ions.

(d) Collision of conduction electrons with each other.

142. To minimise the power loss in the transmission cables connecting the power stations to homes and

factories, the transmission cables carry current

(a) At a very low voltage.

(b) At a very high voltage

(c) At 220 volt

(d) Neither at a very high voltage nor at a very low voltage.

143. The current through a bulb is increased by 1%. Assuming that the resistance of the filament remains unchanged the power of the bulb will

(a) increase by 1% (b) decrease by 1% (c) increase by 2% (d) decrease by 2%

144.Two long parallel wires P and Q are held perpendicular to the plane of the paper at a separation of 5m. If P and Q carry currents of 2.5A and 5A respectively in the same direction, then the magnetic field at a point midway between P and Q is

(a)
$$\frac{\mu_0}{\pi}$$
 (b) $\sqrt{3}\frac{\mu_0}{\pi}$ (c) $\frac{\mu_0}{2\pi}$ (d) $\frac{3\mu_0}{2\pi}$

6	Deeksha	- Cet
$\mathbf{}$		

145.A straight section <i>PQ</i> of a circuit lies along the <i>X</i> – axis from $x = -\frac{a}{2}$ to $x = \frac{a}{2}$ and carries a steady						
current <i>i</i> . The magnetic field due to the section <i>PQ</i> at a point $X = +a$ will be						
(a) proportional to	<i>a</i>	(b) proportional	to a^2			
(c) proportional to	o 1/a	(d) zero				
146.A uniform magnetic fi	eld acts at right angles to	o the direction of motion	n of electron. As a result, the			
electron moves in a ci	ccular path of radius 2 cr	m . If the speed of electro	on is doubled, then the radius of			
the circular path will l	be and the second se					
(a) 2.0 cm	(b) 0.5 cm	(c) 4.0 cm	(d) 1.0 cm			
147.A charge moving with	velocity v in X – direct	ion is subjected to a mag	gnetic field in negative X –			
direction. As a result,	the charge will					
(a) remain unaffeo	ted	(b) start moving	in a circular path $Y - Z$ plane			
(c) retard along X	– axis	(d) move along a	helical path around $X - axis$			
148.Magnetic permeability	is maximum for					
(a) diamagnetic su	ibstance	(b) paramagnetic	substance			
(c) ferromagnetic	substance	(d) all of these				
149.A moving coil galvane	ometer has <i>N</i> number of	f turns in a coil of effecti	ive area A , it carries a current I .			
The magnetic field B	is radial. The torque acti	ing on the coil is				
(a) NA^2B^2I	(b) $NABI^2$	(c) $N^2 ABI$	(d) NABI			
150.Magnetic lines of force	150.Magnetic lines of force due to a bar magnet do not intersect because.					
(a) a point always	has a single net magneti	c field				
(b) the lines have	similar charges and so re	epel each other				
(c) the lines alway	s diverge from a single f	orce				
(d) the lines need	magnetic lenses to be ma	ade to interest				
151.A conducting circular	loop is placed in a unifo	rm magnetic field of 0.0	04T with its plane perpendicular			
to the magnetic field.	The radius of the loop sta	arts shrinking at 2 mm s	⁻¹ . The induced emf in the loop			
when the radius is 2c	m is					
(a) 4.8 πµV	(b) 0.8 πµV	(c) 1.6 πµV	(d) 3.2 πµV			
152.In an induction coil the current increases from 0 to 6A in 0.3s by which induced emf of 30 volts is						
produced in it. Then the value of coefficient of self-inductance of coil will be						
(a) 3 henry	(b) 2 henry	(c) 1 henry	(d) 1.5 henry			
153. In <i>LCR</i> series a.c. circuit, the voltage across each of the components, L, C and R is 50 V. The voltage						
across the <i>LC</i> combin	ation will be					
(a) 100 V	(b) $50\sqrt{2}$ V	(c) 50 V	(d) 0 V			

154. In a series resonance LCR circuit, the voltage across *R* is 100 volt and $R = 1 \text{k}\Omega$ with $C = 2\mu\text{F}$. The

resonance frequency ω is 200 rad s⁻¹. At resonance the voltage across *L* is

(a)
$$2.5 \times 10^{-2}$$
 V (b) 40 V (c) 250 V (d) 4×10^{-3} V

155. The value of alternating emf E in the given circuit will be

156.Match List-I (Electromagnetic wave type) with List-II (its association/application) and select the correct option from the from the choices given below the lists

List I			List II	
(1)	Infrared waves	(i)	To treat muscular strain	
(2)	Radio waves	(ii)	For broadcasting	
(3)	X-rays	(iii)	To detect fracture of bones	
(4)	Ultraviolet rays	(iv)	Absorbed by the ozone layer of the	
			atmosphere	

1	2	3	4
(a) (iv)	(iii)	(ii)	(i)
(b) (i)	(ii)	(iv)	(iii)
(c) (iii)	(ii)	(i)	(iv)
(d) (i)	(ii)	(iii)	(iv)

157.When a plane face of planoconvex lens is silvered, it behaves as concave mirror of focal length 30 cm.But when its curved surface is silvered, it behaves as a concave mirror of focal length 10 cm. The refractive index of lens material is

158. A ray of light travelling in a transparent medium of refractive index μ , falls on a surface separating the medium from air at an angle of incidence of 45°. For which of the following value of μ the ray can undergo total internal reflection?

(a)
$$\mu = 1.33$$
 (b) $\mu = 1.40$ (c) $\mu = 1.50$ (d) $\mu = 1.25$

159.Minimum deviation is observed with a prism having angle of prism A , angle of deviation δ , angle of

incidence i and angle of emergence e. We then have generally

(a)
$$i > e$$
 (b) $i < e$ (c) $i = e$ (d) $i = e = \delta$

160. A ray of light passes through four transparent media with refractive indices μ_1, μ_2, μ_3 and μ_4 as shown

in the figure. The surfaces of all media are parallel. If the emergent ray CD is parallel to the incident ray

AB , we must have

(a)
$$\mu_1 = \mu_2$$
 (b) $\mu_2 = \mu_3$

(c) $\mu_3 = \mu_4$ (d) $\mu_4 = \mu_1$

161.Huygens's concept of secondary wave

(a) Allows us to find the focal length of a thick lens

(b) Is a geometrical method to find a wave front

- (c) Is used to determine the velocity of light
- (d) Is used to explain polarisation

162. The condition for observing Fraunhoffer diffraction from a single slit is that the light wavefront incident

on the slit should be

163.

(a) Spherical	(b) cylindrical	(c) plane	(d) elliptical
.The momentum of a p	photon of wavelength λ	is	
(a) $h\lambda$	(b) h / λ	(c) λ / h	(d) $h/c\lambda$
T 1 . 1		1 (1 (· · · · · · · · ·

164.In a photoelectric emission process from a metal of work function 1.8eV , the kinetic energy of most

energetic electrons is 0.5 eV. The corresponding stopping potential is

(a) 1.8 V (b) 1.2 V (c) 0.5 V (d) 2.3 V

165. In a Rutherford scattering experiment when a projectile of charge Z_1 and mass M_1 approaches a target

nucleus of charge Z_2 and mass M_2 , the distance of closest approach is r_0 . The energy of the projectile is

(a) Directly proportional to Z_1Z_2 (b)Inversely proportional to Z_1	
--	--

(c) Directly proportional to mass M_1 (d) Directly proportional to $M_1 \times M_2$

166. In Bohr model of hydrogen atom, let *P.E.* represents potential energy and *T.E.* represents the total energy. In going to a higher level.

(a) <i>P.E.</i> decreases, <i>T.E.</i> increases	(b) P.E. increases, T.E. decreases		
(c) P.E. decreases, T.E. decreases	(d) P.E. increases, T.E. increases		
167. The ratio of the energies of the hydrogen atom in its first to second excited states is			

(a) 1/4 (b) 4/9 (c) 9/4 (d) 4

168. Fusion reaction takes place at high temperature because

(a) nuclei break up at high temperature

(b) atoms get ionised at high temperature

(c) kinetic energy is high enough to overcome the coulomb repulsion between nuclei

(d) molecules break up at high temperature

beeksha - CET

169. Neutron decay in free space is given as follows $_0n^1 \rightarrow_1 H^1 +_{-1} e^0 + [$]. Then the parenthesis [] represents

172. In a p-n junction diode, a square input signal of 10V is applied as shown in fig.

The output signal across R_L will be

173.A d.c. battery of V volt is connected to a series combination of a resistor R and an ideal diode D as shown in the figure below. The potential difference across R will be

- (a) 2 V when diode is forward biased
- (b) Zero when diode is forward biased
- (c) V when diode is reverse biased
- (d) V when diode is forward biased

174.Circular loop of a wire and a long straight wire carry currents I_c and I_e ,

respectively as shown in figure. Assuming that these are placed in the same plane. The magnetic fields will be zero at the centre of the loop when the separation H is

(a)
$$\frac{I_e R}{I_c \pi}$$
 (b) $\frac{I_c R}{I_e \pi}$
(c) $\frac{\pi I_c}{I_e R}$ (d) $\frac{I_e \pi}{I_c R}$

eeksha - CEI

175. Which of the following set have different dimensions?

(a) pressure, Young's modulus, stress (b) EMF, potential difference, electric potential

(c) heat, work done, energy (d) dipole moment, electric flux, electric field

176. An object is moving with a uniform acceleration which is parallel to its instantaneous direction of motion. The displacements (s)-velocity (v) graph of this object is

177. The speed of a projectile at its maximum height is $\frac{\sqrt{3}}{2}$ times its initial speed. If the range of the projectile

is 'P' times the maximum height attained by it. P is –

(a)
$$\frac{4}{3}$$
 (b) $2\sqrt{3}$ (c) $4\sqrt{3}$ (d) $\frac{3}{4}$

178. A man weighing 80kg, stands on a weighing scale in a lift which is moving upwards with a uniform

acceleration of 5 ms⁻². What would be the reading on the scale? $(g = 10 \text{ ms}^{-2})$

- (a) 1200 N (b) zero (c) 400 N (d) 800 N
- 179. A simple pendulum is released from A as shown. If m and l represent the mass of the bob and length of the pendulum, the gain in kinetic energy at B is

(a)
$$\frac{mgl}{2}$$
 (b) $\frac{mgl}{\sqrt{2}}$
(c) $\frac{\sqrt{3}}{2}mgl$ (d) $\frac{2}{\sqrt{3}}mgl$

180. Two spheres *A* and *B* of masses *m* and 2m, and radii 2R and *R*

respectively are placed in contact as shown. The COM of the system lies

- (a) inside A
- (b) inside B
- (c) at the point of contact
- (d) none of these

