

ABHYAS KCET 2024

Subject	Торіс
C + M + P	Complete Syllabus

Max. Marks: 180 <u>Duration:</u> 3 Hours

- 1. This paper consists of 180 questions with 3 parts of Chemistry, Mathematics and Physics
 - Chemistry: (Q. No. 1 to 60) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
 - Mathematics: (Q. No. 61 to 120) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
 - Physics: (Q. No. 121 to 180) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- 2. The OMR sheet for 200 questions is to be used
- 3. Use of calculators and log tables is prohibited
- 4. Darken the appropriate bubble using a pen in the OMR sheet provided to you. Once entered, the answer cannot be changed. Any corrections or modifications will automatically draw a penalty of 1 mark
- 5. No clarification will be entertained during the examination. Doubts in the paper can be reported to the coordinator after the exam
- 6. If the details in the OMR Sheet are not filled, If the OMR sheet is mutilated, torn, white Ink used, the circles filled and scratched, then the OMR sheet will not be graded

All the best!!

Useful Data

At. Wt.:

$$N = 14$$
; $O = 16$; $H = 1$; $S = 32$; $Cl = 35.5$; $Mn = 55$; $Na = 23$; $C = 12$; $Ag = 108$; $K = 39$; $Fe = 56$; $Pb = 207$

Physical Constants:

$$h = 6.626 \times 10^{-34} \,\mathrm{Js}$$
, $N_a = 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$, $c = 2.998 \times 10^8 \,\mathrm{m\,s}^{-1}$, $m_e = 9.1 \times 10^{-31} \,\mathrm{kg}$, $R = 8.314 \,\mathrm{J\,mol}^{-1} \,\mathrm{K}^{-1}$

Chemistry

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark. $60 \times 1 = 60$

- 1. The pair of species having same percentage of carbon is
 - (a) $C_6H_{12}O_6$ and $C_{12}H_{22}O_{11}$

(b) CH_3COOH and C_2H_5OH

(c) CH_3COOH and $C_6H_{12}O_6$

- (d) HCOOH and CH3COOH
- 2. Which of the following sets of quantum numbers represents an impossible arrangement?

$$n \quad \ell \quad m \quad s$$

(a)
$$2 \quad 2 \quad -2 \quad +\frac{1}{2}$$

(b)
$$4 \ 0 \ 0 \ -\frac{1}{2}$$

(c)
$$5 \ 2 \ 0 \ +\frac{1}{2}$$

(d)
$$3 \ 3 \ +2 \ +\frac{1}{2}$$

- 3. Which of the following statements is correct
 - (a) Ionization enthalpy of Mg is less than that of Na and Al
 - (b) The atomic radius of *F* is more than that of *O*
 - (c) Negative electron gain enthalpy of *F* is less than that of *O*
 - (d) Among Be, B and C, B has lowest ionization enthalpy
- 4. Formal charge on two *O* atoms in

- (a)-1,+1
- (b) -1, 0
- (c) 0, +1
- (d)-1,-1
- 5. A gaseous mixture was prepared by taking equal mole of CO and N_2 of the total pressure of the mixture was found to be 1atm, the partial pressure of nitrogen (N_2) in the mixture is
 - (a) 0.5 atm
- (b) 0.8 atm
- (c) 0.9 atm
- (d) 1 atm

- 6. For which of the following reaction, ΔS is not positive?
 - (a) $I_2(s) \rightarrow I_2(g)$

(b) $CuO(s) + H_2(g) \rightarrow Cu(g) + H_2O(l)$

(c) $2O_3(g) \to 3O_2(g)$

- (d) $2Ag_2O(s) \rightarrow 4Ag + O_2(g)$
- 7. The heat of combustion of carbon to CO_2 is -393.5 kJ/ mol

The heat released for the formation of 22g of CO_2 from carbon and oxygen is

- (a) $-393.5 \, kJ/ \, mol$
- (b) $-39.3 \, \text{kJ/mol}$
- (c) $-19.6 \, \text{kJ/mol}$
- $(d) -196.75 \, kJ/ \, mol$

- 8. The precipitate of Calcium fluoride (CaF_2) with $K_{sp} = 1.7 \times 10^{-10}$ is obtained when equal volumes of the following are mixed. The mixture which gives precipitate is
 - (a) $10^{-4} MCa^{2+}$ and $10^{-4} MF^{-}$

(b) $10^{-2} MCa^{2+}$ and $10^{-3} MF^{-}$

(c) $10^{-5} MCa^{2+}$ and $10^{-3} MF^{-}$

- (d) $10^{-5} MCa^{2+}$ and $10^{-5} MF^{-}$
- 9. Ka_1 , Ka_2 and Ka_3 are respective constants for the following reactions.

$$H_2S \rightleftharpoons H^+ + HS^- Ka_1$$

$$HS^- \rightleftharpoons H^+ + S^{2-} \quad Ka_2$$

$$H_2S \rightleftharpoons 2H^+ + S^{2-}$$
 Ka_3

The correct relationship between Ka_1, Ka_2 and Ka_3 is

(a) $Ka_3 = Ka_1 \times Ka_2$

(b) $Ka_3 = Ka_1 + Ka_2$

(c) $Ka_3 = Ka_1 - Ka_1$

- (d) $Ka_3 = \frac{Ka_1}{Ka_2}$
- 10. $3C10^{-}(aq) \rightarrow C10_{3}^{-} + 2C1^{-}$ is an example of
 - (a) Oxidation reaction

- (b) Reduction reaction
- (c) Disproportionation reaction
- (d) Displacement reaction

11. The IUPAC name of

$$\begin{array}{c|cccc} & H & C_4H_9 \\ & | & | \\ CH_3 - CH_2 - C - C - CH_3 \\ & | & | \\ CH_3 & CH_3 \end{array}$$

(a) 3,4,4- Trimethylheptane

- (b) 3,4,4- Trimethyloctane
- (c) 2-Butyl-2-methyl-3-ethylbutane
- (d) 2-Ethyl-3,3-dimethylheptane
- 12. The number of atoms in 52 u of He are
 - (a) 13
- (b) $13 \times 6.022 \times 10^{23}$
- (c) 52
- (d) $4 \times 6.022 \times 10^{23}$
- 13. The total number of isomeric alcohols with the molecular formula C₄H₉OH is:
 - (a) 3

(b) 4

(c) 5

- (d) 2
- 14. In Duma's method 0.03g of an organic compound gave 41.9 ml of nitrogen at STP. The percentage of N is
 - (a) 29.46%
- (b) 25.2%
- (c) 17.37%
- (d) 39.2%

- 15. Which of the following is most reactive towards sodium?
 - (a) $CH_3 C = CH$

(b) $CH_3 - C = C - CH_3$

(c) $CH_3 - CH_2 - C \equiv CH$

- (d) $CH \equiv CH$
- 16. In the following sequence of reaction, the end product is

$$CaC_2 \xrightarrow{H_2O} A \xrightarrow{Hg^{2+}/H_2SO_4} B \xrightarrow{[O]} C \xrightarrow{Ca(OH)_2} \xrightarrow{Heat} E$$

- (a) Acetaldehyde
- (b) Formaldehyde
- (c) Acetic acid
- (d) Acetone

17. Which of the following is *not* a conductor of electricity?

	(a) Solid NaCl	(b) Cu	(c) Fused NaCl	(d) Brine solution
18.	For an ideal binary liquid	mixture		
	(a) $\Delta H_{(mix)} = 0; \Delta S_{(mix)} < 0$)	(b) $\Delta S_{(mix)} > 0; \Delta G_{(mix)} < 0$)
	(c) $\Delta S_{(mix)} = 0; \Delta G_{(mix)} = 0$)	(d) $\Delta V_{(mix)} = 0; \Delta G_{(mix)} >$	0
19.	The molal elevation consta	ant is the ratio of elevatio	on in boiling point to	
	(a) Molarity		(b) Boiling point of pur	re liquid
	(c) Mole fraction of sol	ute	(d) Molality	
20.	A plant cell shrinks when	placed in		
	(a) Water		(b) Hypotonic solution	1
	(c) Isotonic solution		(d) Hypertonic solution	n
21.	Two moles of a non-volati	le solute are dissolved i	n 5 moles of water. The	vapour pressure of the solute
	relative to that of water is			
	(a) $\frac{2}{5}$	(b) $\frac{2}{7}$	(c) $\frac{4}{7}$	$(d)\frac{5}{7}$
22.	In the Laclanche dry cell, a	nnode is		
	(a) Graphite rod	(b) Carbon	(c) Zinc container	(d) $MnO_2 + C$
23.	The emf of the cell at 25°C	,		
	$Cu / Cu^{2+} (0.01M) Ag^{+} (0$	(1M)/Ag is		
	Given $E_{cell}^{\circ} \frac{2t}{Cu} = 0.34V$ and	$E_{\underline{Ag}^{+}}^{\circ} = 0.80V$		
	(a) 0.46V	(b) 1.14V	(c) 0.43V	(d) 1.29V
24.	The quantity of electricity	needed to separate the	electrolyte of 1M solution	on of $ZnSO_4$, $AlCl_3$ and $AgNO_3$
	completely is in the ratio	of		
	(a) 2:3:1	(b) 2:1:1	(c) 2:1:3	(d) 2:2:1
25.	What is the activation en	ergy for a reaction if it	s rate doubles when the	e temperature is raised from
	300k to 310k?			
	(a) $535 \mathrm{kJ} \mathrm{mol}^{-1}$	(b) $5350 \mathrm{kJ} \mathrm{mol}^{-1}$	(c) $53.5 \mathrm{kJ} \mathrm{mol}^{-1}$	(d) $5.35 \mathrm{kJ} \mathrm{mol}^{-1}$
26.	The time required for 100	percent completion of a	zero order reaction is:	
	(a) $\frac{2k}{a}$	(b) $\frac{a}{2k}$	(c) $\frac{a}{k}$	(d) ak
27.	A first order reaction is habe completed?	lf completed in 45 minu	tes. How long does it nee	ed for 99.9% of the reaction to
	(a) 10 hr	(b) 20 hr	(c) 5 hr	(d) 7.5 hr
	()	(-)	(-)	(-,

Deeksha House 4

	(a) aluminium is a nobl	le metal				
	(b) oxygen forms a protective oxide layer on aluminium surface					
	(c) iron undergoes reaction easily with water					
	(d) iron form both diva	lent and trivalent ions.				
29.	The quantity of electricity r	equired to liberate 112 cr	m ³ of hydrogen at STP fro	m acidulated water is		
	(a) 965 C	(b) 1 Faraday	(c) 0.1F	(d) 96500 C		
30.	Which of the following has	the maximum number of	of unpaired electrons?			
	(a) Mg^{2+}	(b) Ti ³⁺	(c) V^{3+}	$(d) \operatorname{Fe}^{2+}$		
31.	Which of the following stat	ement is wrong regardir	ng Lanthanoids?			
	(a) Ln(III) compounds	are generally colourless				
	(b) Ln(III) compounds	are predominantly ionic	in character.			
	(c) The ionic size of Ln((III) ions decreases with i	ncreasing atomic numbe	r		
	(d) Ln(III) hydroxides a	are mainly basic in natur	e.			
32.	In the coordination compor	and $K_4[Ni(CN)_4]$, the ox	xidation state of nickel is			
	(a) 0	(b) +1	(c) +2	(d) -1		
33.	33. The formula of pentaaquanitratochromium(III) nitrate is					
	$(a) \left[Cr (H2O)6 \right] (NO3)3$		$(b)\left[\operatorname{Cr}(H_2O)_5\operatorname{NO}_3\right](\operatorname{NO}_3)_2$			
	$(c) \left[Cr \left(H_2O \right)_6 \right] \left(NO_2 \right)_2$		(d) $\left[Cr \left(H_2O \right)_5 NO_2 \right] NO_2$	3		
34.	Among the following the se	quare planar geometry is	s for			
	(a) XeF_3	(b) XeF_4	(c) <i>XeF</i> ₂	(d) XeO_3		
35.	The number of moles of	$KMnO_4$ that will be need	ded to react with one m	ole of sulphite ion in acidic		
	solution is					
	(a) $\frac{2}{5}$	(b) $\frac{3}{5}$	(c) $\frac{4}{5}$	(d) 1		
36.	Which of the following pair	rs has the same size?				
	(a) Zr^{4+} , Hf^{4+}	(b) Zn^{2+} , Hf^{4+}	(c) Fe^{2+} , Ni^{2+}	(d) Zr^{4+} , Ti^{4+}		
37.	The ion sowing a magnetic	moment of 2.83BM amo	ong the following is			
	(a) Ti^{3+}	(b) <i>Ni</i> ²⁺	(c) Cr^{3+}	$(d) Mn^{2+}$		
38.	The crystal field splitting en	nergy for octahedral $\left(\Delta_{o}\right)$) and tetrahedral (Δt) co	omplexes is related as		
	(a) $\Delta_t = \frac{1}{2} \Delta_o$	(b) $\Delta_t = \frac{4}{9} \Delta_o$	(c) $\Delta_t = \frac{3}{5} \Delta_o$	(d) $\Delta_t = \frac{2}{5} \Delta_o$		
39.	Which of the following stat	ements is not correct?				
	(a) $[FeF_6]^{3-}$ has five un	paired electrons	(b) $\left[Co(NH_3)_3 Cl_3 \right]$ is a	n non-conductor		

28. Aluminium is more reactive than iron but aluminium is less easily corroded than iron because

Deeksha House

(c) Tetrahedral complexes do not show geometrical isomerism

(d) In CN group, bonding occurs through N

4 0.	Which of the following is a outer orbital complex?						
	$(a) \left[Fe(CN)_6 \right]^{4-}$	(b) $[CoF_6]^{3-}$	$(c) \left[Co \left(NH_3 \right)_6 \right]^{3+}$	$(d) \left[Fe(cn)_3 \right]^{2+}$			
41.	The addition of a catalyst	during a chemical reactio	on alters which of the fol	lowing quantities?			
	(a) Entropy	(b) Internal energy	(c) Enthalpy	(d) Activation energy			
42.	The rate for the first order	The rate for the first order reaction is $0.0069 \mathrm{mol}L^{-1}\mathrm{min}^{-1}$ and the initial concentration is $0.2 \mathrm{mol}L^{-1}$. The					
	half-life period is						
	(a) 10mins	(b) 20mins	(c) 15 min	(d) 7 min			
43.	Ethyl isocyanide is prepare by the reaction between						
	(a) C_2H_5Br and KCN (a)	alc)	(b) C_2H_5Br and $AgCN(alc)$				
	(c) C_2H_5Br and HCN		(d) C_2H_5Br and ammorphisms	nia			
44.	1,3 – Dibromopropane rea	cts with metallic zinc to f	form				
	(a) Propene	(b) Propane	(c) Hexane	(d) Cyclopropane			
45.	Which of the following is	most reactive towards S_I	_V 1 reaction?				
	(a) Methyl bromide		(b) Tertiary butyl bro	mide			
	(c) Secondary butyl br	romide	(d) Ethyl bromide				
46.	An alkene $CH_3CH = CH_2$	is treated with B_2H_6 in p	presence of H_2O_2 . The fi	inal product formed is			
	(a) CH_3CH_2CHO	(b) $CH_3CH(OH)CH_3$	(c) $CH_3CH_2CH_2OH$	$(d) \left(CH_3 CH_2 CH_2 \right)_3 B$			
47.	Acid catalysed dehydration of t – butanol is faster than that of n – butanol because						
	(a) tertiary carbocation is more stable than primary carbocation						
	(b) primary carbocation is more stable than tertiary carbocation						
	(c) t – butanol has high	her boiling point					
	. ,	es place during dehydrat					
48.	Cumene on reaction with oxygen followed by hydrolysis gives						
	(a) CH_4OH and C_6H_5C	COCH ₃	(b) C_6H_5OH and (CH_3)	$)_2 O$			
	(c) $C_6H_5OCH_3$ and CH	T ₃ OH	(d) C_6H_5OH and CH_3OH	COCH ₃			
49.	Anisole on reaction with o	hloromethane in presenc	ce of anhydrous AlCl ₃ g	ives			
	(a) o – methylanisole and p – methoxyanisole						
	(b) p – methylanisole and p – methoxyanisole						
	(c) <i>o</i> – methylanisole a	and p – methoxyanisole					
	(d) o – methoxyacetop	bhenone and $p-$ methox	cyacetophenone				
50.	The most acidic among the following						
	(a) Phenol	(b) <i>p</i> – Cresol	(c) <i>p</i> – Nitrophenol	(d) 2,4 – Dinitrophenol			
51.	Which of the following co	mpound does not react w	vith NaHSO ₃ ?				
	(a) <i>HCHO</i>	(b) $C_6H_5COCH_3$	(c) CH_3COCH_3	(d) CH ₃ CHO			

Deeksha House 6

- 52. A compound (X) with a molecular formula $C_5H_{10}O$ gives a positive 2,4-DNP test but a negative Tollen's test. On oxidation it gives carboxylic acid (Y) with a molecular formula $C_3H_6O_2$. Potassium salt of (Y) undergoes Kolbe's reaction to give a hydrocarbon (2). X. Y and Z respectively are
 - (a) Pentan –3 one, propanoicacid, butane
 - (b) Pentanol, pentanoic acid, octane
 - (c) 2 Methylbutanone, butanoic acid, hexane
 - (d) 2,2 dimethylpropanone, propanoic acid, hexane
- 53. Complete the missing links (X),(Y) and (Z) by making an appropriate choice

$$CH_3COOH \xrightarrow{PBr_3/Br_3} X \xrightarrow{KCN} Y \xrightarrow{H_3O} Z$$

Z

- (a) CH₃COBr
- CH_3COCN
- CH_3COOH

- (b) BrCH2COOH
- CH_2 -COOH
- $HOOC-CH_2-COOH$
- (c) BrCH2COOH
- $CH_2(CN)COOH$
- COOH-COOH

- (d) $Br_2CH COOH$
- $Br_2C(CN)COOH$ CH_3CH_2COOH
- 54. Which of the following will form isocyanide on reaction with $CHCl_3$ and KOH?
 - (a) $C_6H_5NHCH_3$
- (b) $CH_3C_6H_4NH_2$
- (c) $C_6H_5NHC_4H_9$
- (d) $C_6H_5N(C_2H_5)_2$

55. The most basic amine among the following is

- 56. On oxidation with a mild oxidising agent like Br_2/H_2O the glucose is oxidised to
 - (a) Saccharic acid
- (b) Glucaric acid
- (c) Gluconic acid
- (d) Valeric acid

- 57. Which of the following vitamins is water soluble?
 - (a) Vitamin E
- (b) Vitamin D
- (c) Riboflavin
- (d) Retinol
- 58. In fibrous proteins polypeptide chains are held together by
 - (a) Vander Waal's forces

(b) Electrostatic forces of attraction

(c) Hydrogen bonds

- (d) Covalent bonds
- 59. Hofmann's bromamide reaction is to convert
 - (a) alcohol to acid

(b) acid to alcohol

(c) amine to amide

(d) amide to amine

Deeksha House

60. The correct acidity order of the following is

- (a) III > IV > II > I
- (b) IV > III > I > II
- (c) III > II > I > IV
- (d) II > III > IV > I

Mathematics

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark. $60 \times 1 = 60$

- 61. In the set $A = \{1, 2, 3, 4, 5\}$, a relation R is defined by $R = \{x, y\}: x, y \in A, x < y\}$. Then R is
 - (a) Reflexive
- (b) Symmetric
- (c) Transitive
- (d) None of these

- 62. The domain of the function $f(x) = \sqrt{(2-2x-x^2)}$ is
 - (a) $-1 \le x \le \sqrt{3}$

(b) $-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$

(c) $-2 \le x \le 2$

- (d) None of these
- 63. The mapping $f: \mathbb{R}^+ \to \mathbb{R}$ defined by $f(x) = \log_{10} x$, (where \mathbb{R}^+ is the set of all positive real numbers) is
 - (a) Only one-one mapping

(b) Only onto mapping

(c) Both one-one and onto

- (d) None of these
- 64. If $g(x) = 1 + \sqrt{x}$ and $f(g(x)) = 3 + 2\sqrt{x} + x$ then $f(x) = 3 + 2\sqrt{x} + x$
 - (a) $1+2x^2$
- (b) $2 + x^2$
- (c) 1+x
- (d) 2 + x
- 65. Let, $f: R \to R$ be defined by $f(x) = \begin{cases} 2x & x > 3 \\ x^2 & 1 < x \le 3 \end{cases}$ Then $f(-1) + f(2) + f(4) = \begin{cases} 3x & x \le 1 \end{cases}$
 - (a) 9

- (b) 14
- (c) 5

- (d) None of these
- 66. If one root of the equation $5x^2 + 13x + k = 0$ is reciprocal of other, then the value of k is
 - (a) 0

- (b) 5
- (c) $\frac{1}{6}$
- (d) 6
- 67. The number of ways in which ten candidates A_1, A_2, \dots, A_{10} be ranked, if A_1 is always above A_2 is
 - (a) $2 \times 8!$
- (b) 9!
- (c) 10!
- (d) $5 \times 9!$

68. If
$$A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}$

Then AB =

(a) B

- (b) A
- (c) O, where O is null matrix
- (d) I_3 , where I_3 is unit matrix of order 3

69. If
$$A = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix}$$
, then $A^n =$

(a)
$$\begin{pmatrix} x^n & nx^{n-1} \\ 0 & x^n \end{pmatrix}$$

(a)
$$\begin{pmatrix} x^n & nx^{n-1} \\ 0 & x^n \end{pmatrix}$$
 (b) $\begin{pmatrix} nx^{n-1} & x^n \\ 0 & x^n \end{pmatrix}$ (c) $\begin{pmatrix} x^n & 0 \\ nx^{n-1} & x^n \end{pmatrix}$ (d) $\begin{pmatrix} x^n & x^n \\ 0 & x^{n-1} \end{pmatrix}$

(c)
$$\begin{pmatrix} x^n & 0 \\ nx^{n-1} & x^n \end{pmatrix}$$

(d)
$$\begin{pmatrix} x^n & x^n \\ 0 & x^{n-1} \end{pmatrix}$$

70. The value of
$$\Delta = \begin{vmatrix} 5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^6 & 5^7 \end{vmatrix}$$
 is

- (a) 5^2
- (c) 5^{13}
- (d) 5^9

71. The maximum value of
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 + \cos \theta & 1 & 1 \end{vmatrix}$$
 is

(θ is real numbers)

(a)
$$\frac{1}{2}$$

(b)
$$\frac{\sqrt{3}}{2}$$

(c)
$$\sqrt{2}$$

(d)
$$\frac{2\sqrt{3}}{4}$$

72. Solution set of the inequation $\frac{1}{x+2} < \frac{3}{x-3}$ is

(a)
$$\left(-\frac{9}{2},2\right) \cup \left(3,\infty\right)$$

(b)
$$\left(-\infty, -\frac{9}{2}\right) \cup \left(2, 3\right)$$

(c)
$$\left(-\frac{9}{2}, 2\right) \cup (2, 3)$$

(a)
$$\left(-\frac{9}{2}, 2\right) \cup (3, \infty)$$
 (b) $\left(-\infty, -\frac{9}{2}\right) \cup (2, 3)$ (c) $\left(-\frac{9}{2}, 2\right) \cup (2, 3)$ (d) $\left(-\infty, -\frac{9}{2}\right) \cup (3, \infty)$

73. If *n* is any positive integer then the value of $\frac{i^{4n+1} - i^{4n-1}}{2} =$

$$(b) -$$

(d)
$$-i$$

74. The equation of the line passing through (1,2) and perpendicular to x + y + 7 = 0 is

(a)
$$y - x + 1 = 0$$

(b)
$$y-x-1=0$$

(c)
$$y - x + 2 = 0$$

(d)
$$y - x - 2 = 0$$

75. The major axis of an ellipse is three times the minor axis. Then the eccentricity is

(a)
$$\frac{2\sqrt{2}}{3}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{\sqrt{2}}{3}$$

(d)
$$\frac{1}{3}$$

76. If $\operatorname{cosec} A + \cot A = \frac{11}{2}$, then $\tan A$ is

(a)
$$\frac{21}{22}$$

(b)
$$\frac{15}{16}$$

(c)
$$\frac{44}{117}$$

(d)
$$\frac{117}{43}$$

$\neg \neg$	TT1	4 . D .	C 100	0 41:	- 24	-: 2 D -	-: 2 <i>C</i>
//.	me	A + D +	$\cdot \cup = 100$) uieiisi	$\Pi \angle H + 1$	$sm \angle D +$	$\sin 2C =$

(a) $4 \sin A \cdot \sin B \cdot \sin C$

(b) $4\cos A \cdot \cos B \cdot \cos C$

(c) $2\sin A \cdot \sin B \cdot \sin C$

(d) $8\sin A \cdot \sin B \cdot \sin C$

78. If $\cos \theta - 4 \sin \theta = 1$, then $\sin \theta + 4 \cos \theta =$

- $(a) \pm$
- (b) (

- (c) ± 2
- $(d) \pm 4$

79. If $\vec{a} = i - j + 2k$, $\vec{b} = 2i + 3j + k$ and $\vec{c} = i - k$ then the magnitude of $\vec{a} + 2\vec{b} - 3\vec{c}$ is

- (a) $\sqrt{87}$
- (b) $\sqrt{78}$
- (c) $\sqrt{89}$
- (d) $\sqrt{101}$

80. If $|\vec{a}| = 4$, $|\vec{b}| = 2$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $(\vec{a} \times \vec{b})$ is

- (a) 48
- (b) 16
- (c) \vec{a}

(d) 15

81. The feasible solution for a *LPP* is shown in the following figure. Let Z = 3x - 4y, be the objective function. Maximum of Z occurs at

- (a) (5,0)
- (b) (6.5)
- (c) (6,8)
- (d) (4,10)

82. The coordinates of the point P = (3,4,5), then the direction cosines of \overrightarrow{OP} are

(a) 3,4,5

(b) $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$

(c) $\frac{3}{50}, \frac{4}{50}, \frac{1}{10}$

(d) $\frac{3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}$

83. The angle between the lines $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$ and $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-3}{-3}$ is

- (a) 45°
- (b) 30°
- (c) 60°
- (d) 90°

84. $\lim_{x \to 0} \frac{1 - \cos 5x}{\sin 4x} =$

- (a) $\frac{5}{4}$
- (b) $\frac{4}{5}$
- (c) 0
- (d) $-\frac{5}{4}$

85. $\lim_{x \to 0} \frac{e^x - (1+x)}{x^2} =$

- (a) 0
- (b) $\frac{1}{4}$
- (c) $\frac{1}{2}$
- (d) 1

86. Let $f(x) = \begin{cases} \frac{3}{x^2} \sin 2x^2 & x < 0 \\ \frac{x^2 + 2x + x}{1 - 3x^2} & x \ge 0, x \ne \frac{1}{\sqrt{3}}, & f \text{ be continuous at } x = 0, \text{ then } c = 0 \\ 0 & x = \frac{1}{\sqrt{3}} \end{cases}$

- (a) -6
- (b) 6
- (c) 5

(d) -5

- 87. Let $f(x) = |\cos x|$. Then
 - (a) f is every where differentiable
 - (b) f is every where continuous not differentiable at $x = n\pi, n \in \mathbb{Z}$
 - (c) f is every continuous but not differentiable at $x = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$
 - (d) None of these

$$88. \quad \frac{d}{dx} \left(\frac{3e^x + 4}{2e^x - 3} \right) =$$

- (a) $\frac{-17e^x}{(2e^x 3)^2}$ (b) $\frac{17e^x}{(2e^x 3)^2}$ (c) $\frac{e^x}{(2e^x 3)^2}$
- (d) $\frac{e^x}{2e^x 3}$

89. If
$$y = \sin^{-1} \left[\frac{1 - x^2}{1 + x^2} \right]$$
, then $\frac{dy}{dx} = \frac{1 - x^2}{1 + x^2}$

- (a) $-\frac{2}{1+r^2}$ (b) $\frac{2}{1+r^2}$
- (c) $\frac{1}{2+r^2}$
- (d) $\frac{2}{2-r^2}$

90. If
$$y = e^{\left(x^e\right)}$$
 then $\frac{dy}{dx} =$

- (a) $e^{\left(x^2\right)} \cdot \left(x^2\right)$ (b) $e^{\left(x^2\right)} \cdot x^2 \log x$ (c) $e^{\left(x^e\right)} \cdot ex^{e-1}$
- (d) None of these

91. If
$$y = (\sin x)^{\tan x}$$
, then $\frac{dy}{dx} =$

- (a) $(\sin x)^{\tan x} \left[1 + \sec^2 x \cdot \log \sin x \right]$
- (b) $\tan x \cdot (\sin x)^{\tan x 1}$
- (c) $\tan x \cdot (\sin x)^{\tan x 1} \cdot \cos x$
- (d) $(\sin x)^{\tan x} \cdot \log(\sin x) \cdot \sec^2 x$
- 92. A rod of length 13 meters has one end P on the x-axis and the other end Q on the y-axis. If Pmoves along the x-axis with a speed of 12 m/sec, then the speed of the other end Q when it is 12 meters from the origin is
 - (a) $-3 \,\mathrm{m/sec}$
- (b) $-4 \,\mathrm{m/sec}$
- (c) $-5 \,\mathrm{m/sec}$
- (d) $-4 \,\mathrm{m/sec}$

93.
$$\int_0^1 (x-1)e^{-x} dx =$$

- (a) 0
- (b) e
- (c) $\frac{1}{a}$
- (d) $-\frac{1}{a}$

94.
$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx = (a > 0)$$

- (a) 0
- (b) π
- (c) $\frac{\pi}{2}$
- (d) 2π

95.
$$\int_{1}^{2} \frac{dx}{x(1+x^4)} =$$

(a)
$$\frac{1}{4} \log \left(\frac{17}{32} \right)$$

(a)
$$\frac{1}{4} \log \left(\frac{17}{32} \right)$$
 (b) $\frac{1}{4} \log \left(\frac{17}{2} \right)$ (c) $\log \left(\frac{17}{2} \right)$

(c)
$$\log\left(\frac{17}{2}\right)$$

(d)
$$\frac{1}{4} \log \left(\frac{32}{17} \right)$$

96. The value of $\int_{-\pi/2}^{\pi/2} (x^3 + x \cos x + \tan^5 x + 1) dx$

(c)
$$\pi$$

$$97. \quad \int \frac{\sin^6 x}{\cos^8 x} \, dx =$$

(a)
$$-\frac{\tan^7 x}{7} + C$$
 (b) $\frac{\tan^7 x}{7} + C$

(b)
$$\frac{\tan^7 x}{7} + C$$

(c)
$$\frac{7}{\cos^7 x} + C$$

(d)
$$\frac{1}{7\cos^7 x} + C$$

98.
$$\int e^x \left(\frac{1 + \sin x \cdot \cos x}{1 + \cos 2x} \right) dx =$$

(a)
$$e^x \tan x$$

(b)
$$\frac{1}{2}e^x \tan x$$

(c)
$$\frac{1}{2}e^x \cot x$$

(d)
$$2e^x \tan x$$

$$99. \quad \int \frac{dx}{(x+3)(x-3)} =$$

(a)
$$\frac{1}{3} \log \left(\frac{x+3}{x-3} \right) + C$$
 (b) $\frac{1}{6} \log \left(3x \right) + C$ (c) $\frac{1}{6} \log \left(\frac{x-3}{x} \right) + C$ (d) $\frac{1}{6} \log \left(\frac{x-3}{x+3} \right) + C$

(b)
$$\frac{1}{6} \log(3x) + C$$

(c)
$$\frac{1}{6} \log \left(\frac{x-3}{x} \right) + C$$

(d)
$$\frac{1}{6}\log\left(\frac{x-3}{x+3}\right) + C$$

100. The differential equation for $y = A \cos \alpha x + B \sin \alpha x$ where A and B are arbitrary constants is

(a)
$$\frac{d^2y}{dx^2} - \alpha^2 y = 0$$
 (b) $\frac{d^2y}{dx^2} + \alpha^2 y = 0$ (c) $\frac{d^2y}{dx^2} + \alpha y = 0$ (d) $\frac{d^2y}{dx^2} - \alpha y = 0$

(b)
$$\frac{d^2y}{dx^2} + \alpha^2y = 0$$

(c)
$$\frac{d^2y}{dx^2} + \alpha y = 0$$

(d)
$$\frac{d^2y}{dx^2} - \alpha y = 0$$

101. The general solution of $\frac{dy}{dx} = 2xe^{x^2-y}$ is

(a)
$$e^{x^{2-y}} = c$$

(b)
$$e^{-y} + e^{x^2} = c$$
 (c) $e^y = e^{x^2} + c$ (d) $e^{x^2 + y} = c$

(c)
$$e^y = e^{x^2} + c$$

$$(d) e^{x^2 + y} = c$$

102. A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number on the die and a spade card is

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{1}{8}$$

(d)
$$\frac{167}{168}$$

103. In a college of 30 students fail in physics, 25 fail in mathematics and 10 fail in both. One student is chosen at random. The probability that she fails in physics, if she failed in mathematics is

(a)
$$\frac{1}{10}$$

(b) $\frac{2}{5}$

(c) $\frac{9}{20}$

104. A and B are two students. Their chances of solving a problem correctly are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. If the probability of their making a common error is $\frac{1}{20}$ and they obtain the same answer, then the probability of their answer to be correct is

(a) $\frac{1}{12}$

(b) $\frac{1}{40}$

(c) $\frac{13}{120}$

(d) $\frac{10}{13}$

105. Which of	the following	is	correct?
105. WILLIAM	THE TOHOWHIS	ு	COLLECTS

(a)
$$A \cap \phi = A$$

(b)
$$A \cap \phi = \phi$$

(c)
$$A \cap \phi = U$$

(d)
$$A \cap \phi = A'$$

106.If $P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoint of a 3×3 matrix A and |A| = 4, then α is equal to

(d) 0

107. If the sum of series $\sum_{n=0}^{\infty} r^n = S$ for |r| < 1, then the sum of the series $\sum_{n=0}^{\infty} r^n$, is

(a)
$$S^2$$

(b)
$$\frac{S^2}{2S+1}$$

(c)
$$\frac{2S}{S^2-1}$$

(d)
$$\frac{S^2}{2S-1}$$

108. The sum of the coefficients in the expansion of $(1+x-3x^2)^{3148}$ is

$$(d) -1$$

109.If the system of equations x + ky - z = 0, 3x - ky - z = 0 and x - 3y + z = 0, has non-zero solution, then k is equal to

(a)
$$-1$$

110. The function $f(x) = x - \cot x$

(a) always increases

(b) always decreases

(c) never decreases

(d) sometimes increases and sometimes decreases

111. The value of $\cos 15^{\circ} \cos 7 \frac{1^{\circ}}{2} \sin 7 \frac{1^{\circ}}{2}$ is

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{8}$$

(c)
$$\frac{1}{4}$$

(d)
$$\frac{1}{16}$$

112. The value of $\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ}$ is

(c)
$$\frac{1}{2}$$

(d)
$$\frac{1}{\sqrt{2}}$$

113. The projection of $a = 3\hat{i} - \hat{j} + 5\hat{k}$ on $b = 2\hat{i} + 3\hat{j} + \hat{k}$ is

(a)
$$\frac{8}{\sqrt{35}}$$

(b)
$$\frac{8}{\sqrt{39}}$$

(c)
$$\frac{8}{\sqrt{14}}$$

(d)
$$\sqrt{14}$$

114.If the direction cosines of two lines are such that l + m + n = 0, $l^2 + m^2 - n^2 = 0$, then the angle between them is

(a) π

(b) $\pi/3$

(c) $\pi / 4$

(d) π/ϵ

115. The difference between two numbers is 48 and the difference between their arithmetic mean and their geometric mean is 18. Then the greater of two numbers is

(a) 96

(b) 60

(c) 5

(d) 49

116.On the interval [0,1], the function $x^{25}(1-x)^{75}$ takes its maximum value at the point

(a) 0

(b) $\frac{1}{4}$

(c) $\frac{1}{2}$

(d) $\frac{1}{3}$

(a) $2\alpha\Delta t$

117. If the radius of a circle is increasing at a uniform rate of $2 cm/s$. The area of increasing of area of circle,							
at the instant when the radius is 20cm, is							
(a) $70\pi \ cm^2 / s$	(b) $70 cm^2 / s$	(c) $80\pi cm^2 / s$	(d) $80 cm^2 / s$				
118.If $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \cos x)$	118.If $2\tan^{-1}(\cos x) = \tan^{-1}(2\cos ecx)$, then the value of x is						
(a) $\frac{3\pi}{4}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) None of these				
119.The number of real solution	ns of $\tan^{-1}\left\{\sqrt{x(x+1)}\right\} + \sin^{-1}\left(\sqrt{x(x+1)}\right)$	$n^{-1}\left\{\sqrt{x^2+x+1}\right\} = \frac{\pi}{2}$, is					
(a) 0	(b) 1	(c) 2	(d) ∞				
120. The value of $\cos^{-1}\left(-\frac{1}{2}\right)$ are	nong the following, is						
(a) $\frac{9\pi}{3}$	(b) $\frac{2\pi}{3}$	(c) $\frac{5\pi}{3}$	(d) $\frac{11\pi}{3}$				
	Phys	ics					
Multiple Choice Questions v			arries 1 mark. No negative				
mark.			60 x 1 = 60				
121. The maximum and minimum distances of a comet from the sun are $8\times10^{12}\mathrm{m}$ and $1.6\times10^{12}\mathrm{m}$							
respectively. If its velocity when nearest to the sun is $60\mathrm{ms}^{-1}$, what will be its velocity in ms^{-1} when it is							
farthest?							
(a) 12	(b) 60	(c) 112	(d) 6				
122.A steel cable with a radius	2 cm supports a chairlif	t at a ski area. If the max	timum stress is not to exceed				
$10^8~\mathrm{Nm}^{-2}$, the maximum lo	oad the cable can support	tis					
(a) $4\pi \times 10^5 \text{ N}$	(b) $4\pi \times 10^4 \text{ N}$	(c) $2\pi \times 10^5 \text{ N}$	(d) $2\pi \times 10^4 \text{ N}$				
123.A ring of radius 0.5 m and	mass 10 kg is rotating a	bout its diameter with a	ngular velocity of 20 rad s^{-1} .				
Its rotational kinetic energy	is is						
(a) 10 J	(b) 100 J	(c) 500 J	(d) 250 J				
124.A 20cm long capillary tube is dipped in water. The water rises up to 8cm . If the entire arrangement is							
put in a freely falling elevator the length of water column in the capillary tube will be							
(a) 10 cm	(b) 8cm	(c) 20 cm	(d) 4cm				
125. When the temperature of a rod increases from t to $(t + \Delta t)$, its moment of inertia increases from I to							
$(I + \Delta I)$. If α be the coefficient	cient of llinear expansion	of the rod, then the valu	te of $\frac{\Delta I}{I}$ is				

Deeksha House 14

(b) $\alpha \Delta t$

(c) $\frac{\alpha \Delta t}{2}$

(d) $\frac{\Delta t}{2}$

126. The pressure is P , vol	ume V and temperatu	T of a gas in jar Z	A and the other gas in jar B is at
pressure P , volume V	/4 and temperature 27	T, then the ratio of the	number of molecules in jar A and
B will be			
(a) 1:1	(b) 1:2	(c) 2:1	(d) 8:1
127.Two moles of helium ga	as $(\gamma = 5/3)$ are initially	y at temperature 27°C	and occupy a volume of 20 litres.
The gas is first expand	ed at constant pressu	re until the volume is	doubled. Then, it undergoes an
adiabatic change until th	e temperature returns	to the initial value. Wha	at is the final volume of the gas?
(a) 113.13 lit	(b) 115.2 lit	(c) 120 lit	(d) 125 lit
128.Two equations of two S	.H.M. are $x = a \sin(\omega t)$	$-\alpha$) and $y = b\cos(\omega t -$	α). The phase difference between
the two is			
(a) 0°	(b) <i>α</i> °	(c) 90°	(d) 180°
129. The ratio of fundament	al frequency of an org	gan pipe opened at bo	th ends to that of the organ pipe
closed at one end is			
(a) 1:1	(b) 1.5:1	(c) 2:1	(d) 3:1
130.The charges on two sph	eres are +7μC and 5μC	respectively. They exp	perience a force F . If each of them
is given and additional o	tharge of $-2\mu C$, the new	w forces of attraction wi	ill be
(a) <i>F</i>	(b) F/2	(c) $F / \sqrt{3}$	(d) 2F
131.A charge Q is enclosed	by a Gaussian spherica	al surface of radius R .	. If the radius is doubled, then the
outward electric flux wil	1		
(a) increase four tim	es	(b) be reduced to	half
(c) remain the same		(d) be doubled	
132. Four charges $q_1 = 2 \times 10^-$	8 C, $q_2 = -2 \times 10^{-8}$ C, q_3	$= -3 \times 10^{-8} \mathrm{C}$, and $q_4 =$	6×10^{-8} C are placed at four
corners of a square of sic	de $\sqrt{2}$ m . What is the po	otential at the centre of	the square?
(a) 270 V	(b) 300 V	(c) zero	(d) 100 V
133.A pendulum bob of ma	ss 30.7×10^{-6} kg carry	ing a charge 2×10 ⁻⁸ C	is at rest in a horizontal uniform
electric field of 20000 Vi	m^{-1} . The tension in the	thread of the pendulur	m is $\left(g = 9.8 \mathrm{ms}^{-2}\right)$
(a) 3×10^{-4} N	(b) 4×10^{-4} N	(c) 5×10^{-4} N	(d) 6×10^{-4} N
134.The electric potential at	a point (x, y, z) is give	en by $V = -x^2y - xz^3 + 4$. The electric field $ ec{E} $ at that point
is	. , ,		-
(a) $\vec{E} = \hat{i} 2xy + \hat{j} \left(x^2 + \frac{1}{2}x^2 + \frac{1}{2}$	$y^2 + \hat{k} \left(3xz - y^2 \right)$		
(b) $\vec{E} = \hat{i}z^3 + \hat{j}xyz + \hat{k}z$.2		

Deeksha House 15

(c) $\vec{E} = \hat{i}(2xy - z^3) + \hat{j}xy^2 + \hat{k}3z^2x$

(d) $\vec{E} = \hat{i}(2xy + z^3) + \hat{j}x^2 + \hat{k}3xz^2$

135. Consider a parallel plate capacitor of 10 µF (micro-farad) with air filled in the gap between the plates. Now one half of the space between the plates is filled with a dielectric of dielectric constant 4, as shown in the figure. The capacity of the capacitor changes to

- (a) $25 \mu F$
- (b) 20 uF
- (c) 40 µF
- (d) 5 µF

136. Three infinitely long charge sheets are placed as shown in figure. The electric field at point *P* is

- (b) $\frac{4\sigma}{\varepsilon_0}\hat{k}$
- (c) $-\frac{2\sigma}{\varepsilon_0}\hat{k}$ (d) $-\frac{4\sigma}{\varepsilon_0}\hat{k}$

137. The electric field intensity just sufficient to balance the earth's gravitational attraction on an electron will be: (given mass and charge of an electron respectively are 9.1×10^{-31} kg, 1.6×10^{-19} C and $g = 10 \,\mathrm{ms}^{-2}$)

(a)
$$-5.6 \times 10^{-11} \text{ NC}^{-1}$$

(b)
$$-4.8 \times 10^{-15} \text{ NC}^{-1}$$

(c)
$$-1.6 \times 10^{-19} \text{ NC}^{-1}$$

(d)
$$-3.2 \times 10^{-19} \text{ NC}^{-1}$$

138. Five conductors are meeting at a point x as shown in the figure. What is the value of current in fifth conductor

- (b) 1A away from x
- (c) 4 A away from x
- (d) 1 A away from x

139.An electric current passes through a circuit containing two wires of the same material connected in parallel. If the lengths of the wires are in the ratio of 4/3 and radius of the wires are in the ratio of 2/3, then the ratio of the currents passing through the wires will be

(a) 3

- (b) 1/3
- (c) 3/9
- (d) None of these

140. When the current *i* is flowing through a conductor, the drift velocity is *v*. If 2*i* current flows through the same metal but having double the area of cross-section, then the drift velocity will be

- (a) $\frac{v}{4}$
- (c) v

(d) 4v

141.A small power station supplies electricity to 5000 lamps connected in parallel. Each lamp has a resistance of 220 ohm and is operated at 220 V. The total current supplied by the station is

- (a) 2500 A
- (b) 3500 A
- (c) 5000 A
- (d) 10000 A

142. Cell having an emf ε and internal resistance r is connected across a variable external resistance R. As the resistance R is increased, the plot of potential difference V across R is given by

143. The resistance of a bulb filmnet is 100Ω at a temperature of $100\,^{\circ}$ C. If its temperature of coefficient be $0.005\,\text{per}\,^{\circ}$ C, its resistance will become 200Ω at a temperature of

- (a) 300°C
- (b) 400°C
- (c) 500°C
- (d) 200°C

144. An electron enters a region where magnetic field (B) and electric field (E) are mutually perpendicular, then

- (a) it will always move in the direction of B
- (b) it will always move in the direction of E
- (c) it always possesses circular motion
- (d) it can go undeflected also

145. Magnetic field intensity at the centre of a coil of 50 turns, radius 0.5 m and carrying a current of 2 A is

(a)
$$0.5 \times 10^{-5} \text{ T}$$

(b)
$$1.25 \times 10^{-4} \text{ T}$$

(c)
$$3 \times 10^{-5}$$
 T

(d)
$$4 \times 10^{-5}$$
 T

146.A straight wire of length 0.5 metre and carrying a current of 1.2 ampere is placed in uniform magnetic field of induction 2 tesla. The magnetic field is perpendicular to the length of the wire. The force on the wire is

- (a) 2.4 N
- (b) 1.2 N
- (c) $3.0 \,\mathrm{N}$
- (d) 2.0 N

147.Two equal electric currents are flowing perpendicular to each other as shown in the figure. *AB* and *CD* are perpendicular to each other and symmetrically placed with respect to the current flow. Where do we expect the resultant magnetic field to be zero?

- (a) on AB
- (b) on *CD*
- (c) on both AB and CD
- (d) on both OD and BO

148. The magnetic lines of force inside a bar magnet

- (a) are from N pole to S pole of magnet
- (b) do not exist
- (c) depend upon the area of cross section of bar magnet
- (d) are from S pole of magnet

149. A and B are two conductors carrying a current i in the same direction. x and y are two electron beams moving in the same direction. Then

- (a) there will be repulsion between A and B, attraction between x and y
- (b) there will be attraction between A and B, repulsion between x and y
- (c) there will be repulsion between A and B and also x and y
- (d) there will be attraction between A and B and also x and y

150. If a diamagnetic substance is brought near north or south pole of a bar magnet, it is

- (a) attracted by the poles
- (b) repelled by the poles
- (c) repelled by north pole and attracted by the south pole
- (d) attracted by the north pole and repelled by the south pole
- 151.A square coil of side 25 cm having 1000 turns is rotated with a uniform speed in a magnetic field about an axis perpendicular to the direction of the field. At an instant t, the emf induced in the coil is $e = 200 \sin 100 \pi t$. The magnetic field is
 - (a) 0.50 T
- (b) 0.02 T
- (c) 0.01T
- (d) 0.1T
- 152. The magnetic potential energy stored in a certain inductor is $25\,\mathrm{mJ}$, when the current in the inductor is $60\,\mathrm{mA}$. This inductor is of inductance
 - (a) 0.138H
- (b) 138.88 H
- (c) 13.89 H
- (d) 1.389 H
- 153.A resistance of 20 ohm is connected to a source of an alternating potential $V = 200\cos(100\pi t)$. The time taken by the current to change from its peak value to rms value, is
 - (a) 2.5×10^{-3} s
- (b) 25×10^{-3} s
- (c) 0.25 s
- (d) 0.20s
- 154.In a circuit, L, C and R are connected in series with an alternating voltage source of frequency f. The current leads the voltage by 45° . The value of C is
 - (a) $\frac{1}{\pi f \left(2\pi f L R\right)}$

(b) $\frac{1}{2\pi f \left(2\pi f L - R\right)}$

(c) $\frac{1}{\pi f \left(2\pi f L + R\right)}$

- (d) $\frac{1}{2\pi f \left(2\pi f L + R\right)}$
- 155.A transformer is used to light a $100\,W$ and $110\,V$ lamp from a $220\,V$ mains. If the main current is $0.5\,A$, the efficiency of the transformer is approximately
 - (a) 50%
- (b) 90%
- (c) 10%
- (d) 30%

156.The electric and the mag	gnetic field associated w	vith an E.M. wave, propa	gating along the $+z$ – axis, can be
(a) $\left[\vec{E} = E_0 \hat{i}, \vec{B} = B_0\right]$	\hat{j}	(b) $\[\vec{E} = E_0 \hat{k}, \vec{B} = B_0 \hat{k}$	$0\hat{i}$
(c) $[\vec{E} = E_0 \hat{j}, \vec{B} = B_0]$	\hat{i}	(d) $\left[\vec{E} = E_0 \hat{j}, \vec{B} = B \right]$	$c_0\hat{k}$
157.A concave mirror of fo	cal length f_1 is placed	d at a distance of $'d'$ from	om a convex lens of focal length
f_2 . A beam of light constant	oming from infinity and	d falling on this convex-	lens concave mirror combination
returns to infinity. The	distance d must be equ	ial to	
(a) $f_1 + f_2$	(b) $-f_1 + f_2$	(c) $2f_2 + f_1$	(d) $-2f_1 + f_2$
		_	prism of angle A (assumed to be adex of the prism is μ , the angle
of incidence i , is nearly	equal to		
(a) <i>μA</i>	(b) $\frac{\mu A}{2}$	(c) $\frac{A}{\mu}$	(d) $\frac{A}{2\mu}$
159.When a biconvex lens o	of glass having refractiv	e index 1.47 is dipped in	n a liquid, it acts as a plane sheet
of glass. This implies the	at the liquid must have	refractive index	
(a) equal to that of g	glass	(b) less than one	
(c) greater than that	of glass	(d) less than that of	glass
160.A fish looking up thro	ough the water sees th	e outside world contair	ned in a circular horizon. If the
refractive index of wate	r is $\frac{4}{3}$ and the fish is 12	cm below the surface, th	ne radius of this circle in cm is
(a) $\frac{36}{\sqrt{7}}$	(b) 36√7	(c) $4\sqrt{5}$	(d) 36√5
161.Two identical light wa	ves, propagating in the	e same direction, have a	phase difference δ . After they
superimpose, the intens	ity of the resulting wav	e will be proportional to	
(a) $\cos \delta$	(b) $\cos(\delta/2)$	(c) $\cos^2(\delta/2)$	(d) $\cos^2 \delta$
162.The locus of all particles	s in a medium, vibrating	g in the same phase is call	led
(a) Wavelet	(b) fringe	(c) wave front	(d) None of these
163.A steel ball of mass m	is moving with a kineti	ic energy K . The de-Bro	oglie wavelength associated with
the ball is			
(a) $\frac{h}{2mK}$	(b) $\sqrt{\frac{h}{2mK}}$	(c) $\frac{h}{\sqrt{2mK}}$	(d) None of these
164.All electrons ejected fr	om a surface by incid	ent light of wavelength	200 nm can be stopped before

165.In Rutherford's α -particle scattering experiment, what will be correct angle for α scattering for an impact parameter b = 0?

travelling 1m in the direction of uniform electric field of $4~\mathrm{NC}^{-1}$. The work function of the surface is

(a) 90°

(a) 4 eV

(b) 270°

(b) 6.2 eV

(c) 0°

(c) 2 eV

(d) 180°

(d) 2.2 eV

- 166. According to the Bohr theory of H atom, the speed of the electron, its energy and the radius of its orbit varies with the principal quantum number n, respectively, as
 - (a) $\frac{1}{n}$, n^2 , $\frac{1}{2}$
- (b) $n, \frac{1}{2}, n^2$
- (c) $n, \frac{1}{n^2}, \frac{1}{n^2}$
- (d) $\frac{1}{n}, \frac{1}{2}, n^2$
- 167. Energy of an electron in an excited hydrogen atom is −3.4eV . Its angular momentum will be
 - (a) 3.72×10^{-34} Js
- (b) $2.10 \times 10^{-34} \text{ Js}$ (c) $1.51 \times 10^{-34} \text{ Js}$
- (d) 4.20×10^{-34} Js
- 168. M_n and M_p represent mass of neutron and proton respectively. If an element having atomic mass Mand N – neutrons and Z – protons, then the correct relation will be
 - (a) $M < \lceil NM_n + ZM_p \rceil$ (b) $M > \lceil NM_n + ZM_p \rceil$ (c) $M = \lceil NM_n + ZM_p \rceil$ (d) $M = N \lceil M_n + M_p \rceil$
- 169. The binding energy per nucleon for 2_1H and 4_2He respectively are 1.1 MeV and 7.1 MeV . The energy released in MeV when two $\frac{2}{1}H$ nuclei to form $\frac{4}{2}He$ is
- (b) 8.2
- (c) 24
- (d) 28.4

- 170. Nuclear force exists between
 - (a) Neutron-neutron
- (b) Proton-proton
- (c) Neutron-proton
- (d) all of these
- 171. When germanium is doped 1 part in a million with indium, its conductivity increases by a factor of about
 - (a) 10
- (b) 10^3
- (c) 10^5
- (d) 10^6
- 172.Pure Si at 500 K has equal number of electron (n_e) and hole (n_h) concentrations of $1.5 \times 10^{16} \, \mathrm{m}^{-3}$. Doping by indium increases n_h to $4.5 \times 10^{22} \, \mathrm{m}^{-3}$. The doped semiconductor is of
 - (a) n type with electron concentration $n_e = 5 \times 10^{22} \text{ m}^{-3}$
 - (b) p type with electron concentration $n_e = 2.5 \times 10^{10} \text{ m}^{-3}$
 - (c) n type with electron concentration $n_e = 2.5 \times 10^{23} \text{ m}^{-3}$
 - (d) p type having electron concentration $n_e = 5 \times 10^9 \text{ m}^{-3}$
- 173.A p-n junction (D) shown in the figure can act as a rectifier. An alternative current source (V) is connected in the circuit.

The current (I) in the resistor (R) can be shown by

- 174.A charged particle with charge q enters a region of constant, uniform and mutually orthogonal fields \vec{E} and \vec{B} with a velocity \vec{v} perpendicular to both \vec{E} and \vec{B} , and comes out without any change in magnitude or direction of \vec{v} . Then
 - (a) $\vec{v} = \vec{B} \times \vec{E} / E^2$
- (b) $\vec{v} = \vec{E} \times \vec{B} / B^2$ (c) $\vec{v} = \vec{B} \times \vec{E} / B^2$
- (d) $\vec{v} = \vec{E} \times \vec{B} / E^2$
- 175. If momentum (P), area (A) and time (T) are taken to be fundamental quantities, then the energy has the dimensional formula

- (a) $\left\lceil P^1 A^{-1} T^1 \right\rceil$ (b) $\left\lceil P^2 A^1 T^1 \right\rceil$ (c) $\left\lceil P^1 A^{-1/2} T^1 \right\rceil$ (d) $\left\lceil P^1 A^{1/2} T^{-1} \right\rceil$
- 176. Velocity time (v-t) graph for a moving object is shown in the figure. Total displacement of the object during the time interval when there is non-zero acceleration and retardation is

- (a) 60 m
- (b) 50 m
- (c) 30 m
- (d) 40 m
- 177. A person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of $0.5\,\mathrm{ms}^{-1}$ at an angle of 120° with the direction of flow of water. The speed of water in the stream is
 - (a) 1 ms^{-1}
- (b) $0.5 \,\mathrm{ms}^{-1}$
- (c) $0.25 \,\mathrm{ms}^{-1}$
- (d) $0.433 \,\mathrm{ms}^{-1}$
- 178.A conveyor belt is moving at a constant speed of 2 ms⁻¹. A box is gently dropped on it. The coefficient of friction between them is $\mu = 0.5$. The distance that the box will move relative to belt before coming to rest on it taking $g = 10 \,\mathrm{ms}^{-2}$, is
 - (a) 1.2 m
- (b) 0.6 m
- (c) zero
- (d) 0.4 m
- 179.A body of mass 5kg is moving with a momentum of 10kg ms⁻¹. A force of 0.2N acts on it in the direction of motion of the body for 10 second. The increase in its kinetic energy is
 - (a) 4.4 J
- (b) 3.8J
- (c) 3.2J
- 180.A thin uniform rod of length l and mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is ω . Its centre of mass rises to a maximum height of
 - (a) $\frac{1}{3} \frac{l^2 \omega^2}{a}$
- (b) $\frac{1}{6} \frac{l\omega}{a}$
- (c) $\frac{1}{2} \frac{l^2 \omega^2}{g}$
- (d) $\frac{1}{6} \frac{l^2 \omega^2}{\sigma}$