ऽDeekshå

ABUYAS KCET 2024

Subject	Topic
$\mathrm{C}+\mathrm{M}+\mathrm{P}$	Complete Syllabus

1. This paper consists of 180 questions with 3 parts of Chemistry, Mathematics and Physics

- Chemistry: (Q. No. 1 to 60) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- Mathematics: (Q. No. 61 to 120) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.
- Physics: (Q. No. 121 to 180) Multiple Choice Questions with one correct answer. A correct answer carries 1 Mark. No Negative marks.

2. The OMR sheet for $\mathbf{2 0 0}$ questions is to be used
3. Use of calculators and log tables is prohibited
4. Darken the appropriate bubble using a pen in the OMR sheet provided to you. Once entered, the answer cannot be changed. Any corrections or modifications will automatically draw a penalty of 1 mark
5. No clarification will be entertained during the examination. Doubts in the paper can be reported to the coordinator after the exam
6. If the details in the OMR Sheet are not filled, If the OMR sheet is mutilated, torn, white Ink used, the circles filled and scratched, then the OMR sheet will not be graded

All the best!!

Useful Data

At. Wt.:
$N=14 ; O=16 ; H=1 ; S=32 ; C l=35.5 ; M n=55 ; N a=23 ; C=12 ; A g=108 ; K=39 ; F e=56 ; P b=207$
Physical Constants:

$$
h=6.626 \times 10^{-34} \mathrm{Js}, \mathrm{~N}_{\mathrm{a}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}, \mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

Chemistry

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark.
 $60 \times 1=60$

1. A phosphorus oxide has 43.6% phosphorus (at, mass $=31$).

The empirical formula is
(a) $\mathrm{P}_{2} \mathrm{O}_{5}$
(b) $\mathrm{P}_{2} \mathrm{O}_{3}$
(c) $\mathrm{P}_{4} \mathrm{O}_{6}$
(d) PO_{2}
2. Which of the following orbital designations is not correct corresponding to quantum number?
(a) $n=5$
$\ell=2 \quad \rightarrow 5 d$
(b) $n=2$
$\ell=0 \quad \rightarrow 2 s$
(c) $n=4$
$\ell=3 \quad \rightarrow 4 f$
(d) $n=7 \quad \ell=2 \quad \rightarrow 7 d$
3. Which of the following families have largest negative electron gain enthalpy values?
(a) Alkali metals
(b) Noble gases
(c) Halogens
(d) Alkaline earth metals
4. The molecule/ion having pyramidal shape is
(a) PCl_{3}
(b) SO_{3}
(c) CO_{3}^{2-}
(d) NH_{4}^{+}
5. Identify a molecule which doesn't exist.
(a) C_{2}
(b) O_{2}
(c) He_{2}
(d) $L i_{2}$
6. Density of 3 M solution of NaCl is $1.25 \mathrm{~g} / \mathrm{ml}$. The mass of the solvent in the solution is
(a) 1075.4 g
(b) 10.745 g
(c) 10.754 g
(d) 1074.5 g
7. A certain reaction is at equilibrium at 355 k and the enthalpy change for the reaction is 213 kJ . The value of $\Delta \mathrm{S}\left(\mathrm{in}_{\mathrm{Jk}}{ }^{-1} \mathrm{~mol}^{-1}\right)$ for the reaction is
(a) 55.0
(b) 60.0
(c) 68.5
(d) 120.0
8. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) \quad \Delta \mathrm{H}=12.40 \mathrm{kcal}$

According to the reaction, heat of formation of HI will be
(a) 12.4 kcal
(b) -12.4 kcal
(c) -6.20 kcal
(d) 6.20 kcal
9. The ratio of K_{p} / K_{c} for the reaction $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{CO}_{2}(g)$ is
(a) 1
(b) $R T$
(c) $(R T)^{\frac{1}{2}}$
(d) $(R T)^{-\frac{1}{2}}$
10. Which of the following are Lewis acids?
(a) PH_{3} and BCl_{3}
(b) AlCl_{3} and SiCl_{4}
(c) PH_{3} and SiCl_{4}
(d) BCl_{3} and AlCl_{3}
11. In the ionic equation for the reaction $\mathrm{IO}_{3}{ }^{-}+6 \mathrm{H}^{+}+a e^{-1} \rightarrow I^{-}+3 \mathrm{H}_{2} \mathrm{O}$ the value of a is
(a) 2
(b) 4
(c) 6
(d) 10
12. Which of the following will given white precipitate on heating with AgNO_{3} ?
(a) CHCl_{3}
(b) CCl_{4}
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
(d) NaCl
13. The correct nomenclature (IUPAC) for the following alcohol is

(a) 2-Ethylbutan-2-ol
(b) 3-methyl pentan3-ol
(c) 3-Ehtyl-3-methyl ethanol
(d) 1,1-diethylmethanol
14. In terms of relative stability, which of the following is in general wrong
(a) tertiary free radicals are more stable than secondary
(b) secondary free radicals are more staple than primary
(c) tertiary carbocation is less stable than secondary
(d) secondary carbocation is less stable than primary
15. Ethylene reacts with alkaline KMnO_{4} to give
(a) Acetaldehyde
(b) Ethylene glycol
(c) Formaldehyde
(d) Ethylene oxide
16. According to Huckel rate the aromatic compounds must have delocalised Π electrons equal to
(a) $(4 n+1)$
(b) $(4 n+2)$
(c) $4 n$
(d) $(2 n+2)$
17. Ozonolysis of an organic compound ' A ' produces acetone and propionaldehyde in equimolar mixture. Identify ' A ' from thr following compunds.
(a) Pent-1-ene
(b) 2-Methylpent-1-ene
(c) 2 Methylpent-2-ene
(d) 2-Methylpent-1-ene
18. The complex $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ has the IUPAC name
(a) diamminesilver (I) dicyanosilver (I)
(b) diammine silver (I) dicyanoargentate (I)
(c) dicyanosilver (I) diammineargentate (I)
(d) diamminesilver (I) dicyanoargentate (II)
19. The half-life period of a $1^{\text {st }}$ order reaction is 60 minutes. What percentage will be left over after 240 minutes?
(a) 5%
(b) 6.25%
(c) 6%
(d) 4.25%
20. 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to 178.2 g of water. The vapour pressure of water for this aqueous solution at $100^{\circ} \mathrm{C}$ is
(a) 76.00 torr
(b) 752.40 torr
(c) 759.00 torr
(d) 7.60 torr
21. The ratio of the value of any colligative property for CaCl_{2} solution to that of sugar solution under equal concentration is nearly
(a) 1.0
(b) 0.33
(c) 3.0
(d) 2.5
22. The freezing point of a solution containing 36 g of a compound having empirical formula $\mathrm{CH}_{2} \mathrm{O}$ in 1200 g of water is found to be -0.93°. Molecular formula of the compound is $\left(\mathrm{Kf}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
(a) $\mathrm{CH}_{2} \mathrm{O}$
(b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(c) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(d) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
23. All form ideal solution except
(a) $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$
(d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
24. The electrode potential of a silver electrode dipped in a 0.01 M solution of silver nitrate at $25^{\circ} \mathrm{C}$ $\left(E^{\circ}{ }_{A g^{+} / A g}=0.80 \mathrm{~V}\right)$
(a) 0.0741 V
(b) 0.059 V
(c) 0.741 V
(d) 0.859 V
25. In $\mathrm{H}_{2}-\mathrm{O}_{2}$ fuel cell, the reaction occurring at cathode is
(a) $\mathrm{H}^{+}+\mathrm{OH}^{-1} \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
(b) $\mathrm{H}^{+}+e^{-1} \rightarrow \frac{1}{2} \mathrm{H}_{2}$
(c) $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 e^{-1} \rightarrow 4 \mathrm{OH}^{-1}$
(d) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
26. If \wedge_{C} for $\mathrm{NH}_{4} \mathrm{OH}$ is $11.5 \Omega^{-1} \mathrm{~cm}^{-2} \mathrm{~mol}^{-1}$, its degree of dissociation would be (given that $\lambda^{\circ}{ }_{N H_{4}+}=73.4$ and $\lambda^{\circ}{ }_{O H^{-}}=197.6 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$)
(a) 0.0848
(b) 0.0424
(c) 0.0212
(d) 0.004
27. How many hours does it take to reduce 1 mol of $F e^{3+}$ to Fe^{2+} with 2 A current?
(a) 35
(b) 20.0
(c) 26.8
(d) 13.4
28. For the reaction: $3 \mathrm{ClO}^{-} \rightarrow 3 \mathrm{ClO}_{3}^{-}+2 \mathrm{Cl}^{-}$various steps are
$\mathrm{ClO}^{-}+\mathrm{ClO}^{-} \rightarrow \mathrm{ClO}_{2}^{-}+\mathrm{Cl}^{-}$(slow)
$\mathrm{ClO}_{2}^{-}+\mathrm{ClO}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-}$(fast)
The order of the reaction is
(a) 1
(b) 2
(c) 0
(d) $\frac{3}{2}$
29. If the half-life period for a reaction in A is 100 mins . How long will it take $[A]$ to reach 25% of its initial concentration?
(a) 50 min
(b) 250 min
(c) 200 min
(d) 500 min
30. A reaction having equal energies of activation for forward and reverse reactions has
(a) $\Delta G=0$
(b) $\Delta H=0$
(c) $\Delta H=\Delta G=\Delta S=0$
(d) $\Delta S=0$
31. A reaction has rate law expression as

Rate $=\mathrm{k}[A]^{3 / 2}[B]^{-1 / 2}$
If concentration of both A and B are increased four times, the rate of the reaction
(a) increases 4 times
(b) decreases 4 times
(c) increases 16 times
(d) remains same
32. The inversion of cane sugar into glucose and fructose is a reaction of
(a) first order
(b) second order
(c) third order
(d) zero order
33. The rate equation for the reaction $2 \mathrm{NO}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NOCl}$ is given by the rate equation $r=K[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$. The value of rate constant can be increased by
(a) increasing the temperature
(b) increasing the concentration of NO
(c) increasing the concentration of Cl_{2}
(d) doing all these
34. Which of the following electrolytic solutions has the least specific conductance?
(a) $2 N$
(b) 0.002 N
(c) 0.02 N
(d) 0.2 N
35. Cell constant of a cell is generally found using
(a) NaCl
(b) KCl
(c) $\mathrm{NH}_{4} \mathrm{Cl}$
(d) $\mathrm{H}_{2} \mathrm{SO}_{4}$
36. Question:

Electrolyte	KCl	KNO_{3}	HCl	NaOAc	NaCl
$\wedge^{\circ}\left(\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}\right)$	149.9	145.0	426.2	91.0	126.5

Calculate $\wedge^{\circ} H O A C$ using appropriate molar conductance of the electrolytes listed above at infinite dilution in $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$
(a) 517.2
(b) 552.7
(c) 390.7
(d) 217.5
37. Nickel carbonyl is having
(a) linear structure
(b) tetrahedral structure
(c) square planar structure
(d) octahedral structure
38. According to crystal field theory, the $M-L$ bond in a complex is
(a) purely ionic
(b) purely covalent
(c) purely co-ordinate
(d) partially covalent
39. Which of the following hybridisation has planar geometry?
(a) $s p^{3} d$
(b) $d s p^{3}$
(c) $d s p^{2}$
(d) $s p^{3}$
40. Which of the following forms a colourless solution in aqueous solution?
(a) v^{3+}
(b) Cr^{3+}
(c) $T i^{3+}$
(d) $S c^{3+}$
41. The electronic configuration of Cr^{3+} is
(a) $[A r] 3 d^{3} 4 s^{\circ}$
(b) $[A r] 3 d^{4} 4 s^{2}$
(c) $[A r] 3 d^{5} 4 s^{1}$
(d) $[A r] 3 d^{2} 4 s^{1}$
42. The correct order of the first ionisation enthalpies is
(a) $\mathrm{Mn}<\mathrm{Ti}<\mathrm{Zn}<\mathrm{Ni}$
(b) $T i<M n<Z n<N i$
(c) $\mathrm{Ti}<\mathrm{Mn}<\mathrm{Ni}<\mathrm{Zn}$
(d) $\mathrm{Zn}<\mathrm{Ni}<\mathrm{Mn}<\mathrm{Ti}$
43. Which of the following is most acidic?
(a) MnO_{3}
(b) MnO_{2}
(c) $\mathrm{Mn}_{2} \mathrm{O}_{7}$
(d) $\mathrm{Mn}_{3} \mathrm{O}_{4}$
44. Which of the following is least basic?
(a) $\mathrm{La}(\mathrm{OH})_{3}$
(b) $\mathrm{Lu}(\mathrm{OH})_{3}$
(c) $\mathrm{Ce}(\mathrm{OH})_{3}$
(d) $\mathrm{Nd}(\mathrm{OH})_{3}$
45. Which of the following has maximum conductivity in aqueous solution?
(a) $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{3}$
(b) $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}$
(c) $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{3}$
(d) $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}$
46. Which of the following compounds show optical isomerism?
(a) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(b) $\left[\mathrm{ZnCl}_{4}\right]^{2-}$
(c) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(d) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
47. Ethyl bromide can be obtained by the action of HBr on
(a) Ethyne
(b) Ethane
(c) Propene
(d) Ethanol
48. $S_{N} 1$ mechanism of alkyl halide is favoured by
(a) Higher concentration of nucleophile
(b) Polar solvents
(c) Presence of less bulky alkyl group
(d) Strong nucleophiles
49. Which of the following is most acidic?
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
(c) $\left(\mathrm{CH}_{3}\right) \mathrm{CHCH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{OH}$
50. In the reaction

(a) Salicylaldehyde
(b) Salicylic acid
(c) O-Cresol
(d) Benzoic acid
51. The major product in the reaction
$\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{HI} \rightarrow$ Product
(a) $\mathrm{ICH}-\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(b) $\mathrm{CH}_{3}-\mathrm{O}-\underset{I}{\mathrm{C}}-\left(\mathrm{CH}_{3}\right)_{2}$
(c) $\mathrm{CH}_{3} \mathrm{I}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
(d) $\mathrm{CH}_{3} \mathrm{OH}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHI}$
52. Which of the following is most reactive towards $H C N$?
(a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CHO}$
(c) $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$
(d) HCHO
53. Which of the following will give cannizzaro reaction?
(a) $\mathrm{CH}_{3} \mathrm{CHO}$
(b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHO}$
(d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$
54. In the reaction

(a) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHO}$
(d) $\mathrm{CH}_{3}-\underset{\mathrm{OH}}{\mathrm{CH}}-\mathrm{COOH}$
55. Mononitration of aniline is achieved by
(a) direct treatment with nitration mixture under reflux
(b) using fuming HNO_{3}
(c) acetylation followed by nitration and subsequent hydrolysis
(d) $\mathrm{KNO}_{3}+$ con. HNO_{3}
56. Structurally cellulose is a linear polymers of
(a) β - glucose molecules
(b) Sucrose molecules
(c) $\alpha-$ glucose molecules
(d) Fructose molecules
57. A peptide harmone is
(a) Estrone
(b) Testosterone
(c) Insulin
(d) Corticoid
58. Which of the following statement is not correct about DNA molecule?
(a) It has double helix structure
(b) It serves as hereditary material
(c) The two DNA strands are exactly similar
(d) Its replication is called semi-conservative mode of replication
59. The order of reactivities of methyl halides in the formation of Grignard reagent is
(a) $\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{I}$
(b) $\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Cl}$
(c) $\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{Cl}$
(d) $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
60. Tollen's reagent is
(a) Alkaline KMnO_{4} solution
(b) Sodium potassium tartarate \& NaOH
(c) Ammonical AgNO_{3} solution
(d) Ammonical $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$

Mathematics

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark.

61. The value of $\cos ^{2} 15^{\circ}-\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}-\cos ^{2} 60^{\circ}+\cos ^{2} 75^{\circ}$ is
(a) 2
(b) 0
(c) $\frac{1}{4}$
(d) $\frac{1}{2}$
62. $\sin 10^{\circ}+\sin 20^{\circ}+\sin 30^{\circ}+\ldots .+\sin 360^{\circ}$ is equal to
(a) 0
(b) 1
(c) -1
(d) none of these
63. If α is a root of $25 \cos ^{2} \theta+5 \cos \theta-12=0, \frac{\pi}{2}<\alpha<\pi$, then $\sin 2 \alpha$ is equal to
(a) $\frac{24}{25}$
(b) $\frac{-24}{25}$
(c) $\frac{25}{24}$
(d) none of these
64. The solution set of the inequation $\left(x^{2}+x+1\right)(2 x-3)>0$ is
(a) R
(b) $\left(\frac{3}{2}, \infty\right)$
(c) $\left[\frac{3}{2}, \infty\right)$
(d) $\left(-\infty, \frac{3}{2}\right)$
65. If $1+6+11+\ldots+x=148$, then x is equal to
(a) 36
(b) 8
(c) 30
(d) None of these
66. The figures $4,5,6,7,8$ are written in every possible order. The number of numbers greater than 56000 is
(a) 72
(b) 90
(c) 96
(d) 98
67. The mean and S.D of $1,2,3,4,5,6$ is
(a) $\frac{7}{2}, \sqrt{\frac{35}{12}}$
(b) 3,3
(c) $\frac{7}{2}, \sqrt{3}$
(d) $3, \frac{35}{12}$
68. A digit is selected at random from either of the two sets $\{1,2,3,4,5,6,7,8,9\}$ and $\{1,2,3,4,5,6,7,8,9\}$. What is the chance that the sum of the digits selected is 10 ?
(a) $\frac{1}{9}$
(b) $\frac{10}{81}$
(c) $\frac{10}{18}$
(d) None of these
69. A baised dice is tossed and the respective probabilities of various faces to show up are

Face	1	2	3	4	5	6
Probability	0.1	0.24	0.19	0.18	0.15	0.14

If an even face has turned up, then the probability that it is face 2 or face 4 is
(a) 0.42
(b) 0.75
(c) 0.25
(d) 0.33
70. Four cards are drawn simultaneously from a deck of 52 cards. The chance that they all are the same suit is
(a) $\frac{C(13,4)}{C(52,4)}$
(b) $\frac{4 C(13,4)}{C(52,4)}$
(c) $\frac{4!C(13,4)}{C(52,4)}$
(d) None of these
71. The probability that an event E occurs in one trial of an experiment is 0.4 . Three independent trials of experiment are performed. The probability that the event E occurs atleast once is
(a) 0.784
(b) 0.904
(c) 0.936
(d) none of these
72. A bag ' A ' contains two white and two red balls and another bag ' B ' contains 4 white and 5 red balls. A ball is drawn and is found to be red. The probability that is was drawn from bag B is
(a) $\frac{25}{52}$
(b) $\frac{1}{2}$
(c) $\frac{10}{19}$
(d) $\frac{13}{18}$
73. If $P(A \cap B)=\frac{1}{2}$ and $P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{3}, P(A)=p$ and $P(B)=2 p$ then value of p is
(a) $\frac{7}{18}$
(b) $\frac{1}{3}$
(c) $\frac{4}{9}$
(d) $\frac{1}{9}$
74. The range of the function $f(x)=a \sin x+b \cos x$ is
(a) $[a, b]$
(b) $[a-b, a+b]$
(c) $[-(a+b),(a+b)]$
(d) $\left[-\sqrt{a^{2}+b^{2}}, \sqrt{a^{2}+b^{2}}\right]$
75. The function $f(x)=x^{2}+\sin x$ is
(a) an odd function
(b) an even function
(c) neither even nor odd
(d) a constant function
76. Let $f:[0, \infty) \rightarrow[0,2]$ be defined by $f(x)=\frac{2 x}{1+x}$, then f is
(a) one-one, but not onto
(b) onto, but not one-one
(c) both one-one onto
(d) neither one-one nor onto
77. If $f(x)=\frac{x-1}{x+1}$, then $f\left(\frac{1}{f(x)}\right)$ equals
(a) 0
(b) 1
(c) x
(d) $\frac{1}{x}$
78. The projection of vector $\hat{i}-2 \hat{j}+\hat{k}$ on the vector $4 \hat{i}-4 \hat{j}+7 \hat{k}$ is
(a) $\frac{5}{19} \sqrt{5}$
(b) $\frac{19}{9}$
(c) $\frac{9}{19}$
(d) $\frac{1}{19} \sqrt{6}$
79. If $\vec{a}+\vec{b}$ is at right angles to \vec{b} and $2 \vec{b}+\vec{a}$ is at right angles to \vec{a} then
(a) $a=\sqrt{2} b$
(b) $a=2 b$
(c) $a=b$
(d) $2 a=b$
80. The lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}$ are
(a) skew
(b) parallel
(c) intersecting
(d) none of these
81. If $f(x)=(1-x) \tan \frac{\pi x}{2}$, then $\lim _{x \rightarrow 1} f(x)$ is equal to
(a) $\frac{\pi}{2}$
(b) $\frac{2}{\pi}$
(c) 0
(d) 1
82. $\lim _{n \rightarrow \infty}\left(\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots \ldots .+\frac{1}{n(n+1)}\right)=$
(a) -1
(b) 1
(c) 0
(d) none of these
83. $\lim _{x \rightarrow 4} \frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}=$
(a) 0
(b) $\frac{1}{3}$
(c) $-\frac{1}{3}$
(d) does not exist
84. If $y=\frac{\log x}{x}$, then $\frac{d^{2} y}{d x^{2}}=$
(a) $\frac{3-2 \log x}{x^{3}}$
(b) $\frac{2 \log x-3}{x^{3}}$
(c) $\frac{2 \log x-3}{x^{4}}$
(d) None of these
85. Let $f(x)=\frac{x^{2}}{1-x^{2}}, x \neq 0, \pm 1$. Then derivative of $f(x)$ w.r.t x^{2} is
(a) $\frac{2 x}{\left(1-x^{2}\right)^{2}}$
(b) $\frac{1}{\left(1-x^{2}\right)^{2}}$
(c) $\frac{1}{\left(2+x^{2}\right)^{2}}$
(d) $\frac{1}{\left(2-x^{2}\right)^{2}}$
86. If $y=\log (\sqrt{x}+\sqrt{x-a})$, then $\frac{d y}{d x}$ is equal to
(a) $\frac{1}{\sqrt{x}+\sqrt{x-a}}$
(b) $\frac{1}{2 \sqrt{x} \sqrt{x-a}}$
(c) $\frac{1}{\sqrt{x} \sqrt{x-a}}$
(d) none of these
87. Differential co-efficient of $\sec \left(\tan ^{-1} x\right)$ is
(a) $\frac{x}{\sqrt{1+x^{2}}}$
(b) $\frac{1}{\sqrt{1+x^{2}}}$
(c) $x \sqrt{1+x^{2}}$
(d) $\frac{x}{1+x^{2}}$
88. Let $f(x)=\frac{1-\sin x}{(\pi-2 x)^{2}}$ when $x \neq \frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right)=k$. The value of k which makes f continuous at $\frac{\pi}{2}$ is
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{1}{8}$
(d) none of these
89. Let $f(x)=\left\{\begin{array}{l}a+x, x \geq 0 \\ a-x, x<0\end{array}\right.$, then $f(x)$ is
(a) continuous but not derivable at 0
(b) derivable at 0
(c) not continuous at 0
(d) none of these
90. Let $f(x)=x^{25}(1-x)^{75}$ for all $x \in[0,1]$, then $f(x)$ assumes its maximum value at
(a) 0
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) $\frac{1}{3}$
91. Let $f(x)=\tan x-4 x$, then in the interval $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right), f(x)$ is
(a) a decreasing function
(b) an increasing function
(c) a constant function
(d) none of these
92. The maximum value of $f=4 x+3 y$ subject to constraints $x \geq 0, y \geq 0,2 x+3 y \leq 18, x+y \geq 10$ is
(a) 35
(b) 36
(c) 34
(d) none of these
93. If A and B are any two sets, then $(A \cup B)-(A \cap B)$ is equal to
(a) $A-B$
(b) $B-A$
(c) $(A-B) \cup(B-A)$
(d) None of these
94. $\int \frac{\cos 2 x}{\cos x} d x=$
(a) $2 \sin x+\log (\sec x+\tan x)+C$
(b) $2 \sin x+\log (\sec x-\tan x)+C$
(c) $2 \sin x-\log |\sec x+\tan x|+C$
(d) $2 \sin x-\log |\sec x-\tan x|+C$
95. An anti-derivative of $\frac{x}{\cos ^{2} x}$ is
(a) $x \tan x+C$
(b) $\log |\cos x|+C$
(c) $x \tan x+\log |\cos x|+C$
(d) $\cot x+C$
96. $\int \frac{1}{\sqrt{1-x}} d x$ is equal to
(a) $\sqrt{1-x}+C$
(b) $-2 \sqrt{1-x}+C$
(c) $2 \sqrt{1-x}+C$
(d) none of these
97. $\int \frac{\log x-1}{(\log x)^{2}} d x$ is equal to
(a) $\frac{\log x}{x}+c$
(b) $\frac{x}{\log x}+c$
(c) $\frac{(\log x)^{2}-x}{\log x}$
(d) none of these
98. $\int \frac{1}{x^{3}\left(x^{3}+1\right)^{1 / 3}} d x$ is equal to
(a) $-\frac{1}{2}\left(1+x^{-3}\right)^{2 / 3}+C$
(b) $-\left(1+x^{3}\right)^{2 / 3}+C$
(c) $-\left(1+x^{-3}\right)^{-2 / 3}+C$
(d) none of these
99. The value of $\int_{1}^{2} \frac{1}{x^{2}} e^{-1 / x} d x$ is
(a) $\frac{1}{\sqrt{e}}+\frac{1}{e}$
(b) $\frac{1}{e}-\frac{1}{\sqrt{e}}$
(c) $\frac{1}{\sqrt{e}}-\frac{1}{e}$
(d) 0
100. $\int_{-8}^{8}\left(\sin ^{93} x+x^{295}\right) d x$ is equal to
(a) 0
(b) a number different from 0
(c) $2\left(8^{295}+1\right)$
(d) $2+8^{295}$
101. $\int_{0}^{2} \frac{d x}{\{a x+b(2-x)\}^{2}}$ is equal to
(a) $\frac{-1}{2 a b}$
(b) $\frac{1}{2 a b}$
(c) $\frac{\alpha-b}{2 a b}$
(d) none of these
102.If $\int_{0}^{\pi / 2} \frac{\cos x}{4-\sin ^{2} x} d x=\lambda \log 3$, then λ is equal to
(a) $\frac{1}{4}$
(b) $-\frac{1}{4}$
(c) $\frac{1}{2}$
(d) none of these
103.The solution of the differential equation $\cos x \sin y d x+\sin x \cos y d y=0$ is
(a) $\frac{\sin x}{\sin y}=C$
(b) $\cos x+\cos y=C$
(c) $\sin x+\sin y=C$
(d) $\sin x \sin y=C$
104.If $\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$ then $x=$
(a) $\frac{2}{3}$
(b) $\frac{-2}{3}$
(c) $\pm \frac{2}{3}$
(d) none of these
105.If A and B are symmetric matrices of the same order, then
(a) $A B$ is a symmetric matrix
(b) $A B$ is skew-symmetric matrix
(c) $A B+B A$ is symmetric matrix
(d) $A B-B A$ is a symmetric matrix
106.If the system of equations $x+k y-z=0,3 x-k y-z=0$ and $x-3 y+z=0$, has non-zero solution, then k is equal to
(a) -1
(b) 0
(c) 1
(d) 2
107. Let P and Q be 3×3 matrices, $P \neq Q$. If $P^{3}=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to
(a) -2
(b) 1
(c) 0
(d) -1
108.If $A=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$, then $|A||\operatorname{adj} A|$ is equal to
(a) a^{9}
(b) a^{-3}
(c) $-a^{7}$
(d) $2 a^{6}$
109.A straight line passes through the points $(5,0)$ and $(0,3)$. The length of perpendicular from the point $(4,4)$ on the line is
(a) $\frac{15}{\sqrt{34}}$
(b) $\frac{\sqrt{17}}{2}$
(c) $\frac{17}{2}$
(d) $\sqrt{\frac{17}{2}}$
110.The principal value of $\sin ^{-1}\left[\sin \left(\frac{2 \pi}{3}\right)\right]$ is
(a) $\frac{-2 \pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{4 \pi}{3}$
(d) None of these
111.If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, then the value of $x^{9}+y^{9}+z^{9}-\frac{1}{x^{9} y^{9} z^{9}}$ is
(a) 0
(b) 1
(c) 2
(d) 3
112. Equation of the line passing through $(2,-1,1)$ and parallel to the line $\frac{x-5}{4}=\frac{y+2}{-3}=\frac{z}{5}$ is
(a) $\frac{x-2}{4}=\frac{y+1}{-3}=\frac{z-1}{5}$
(b) $\frac{x-2}{4}=\frac{y+1}{3}=\frac{z-1}{5}$
(c) $\frac{x-2}{-4}=\frac{y+1}{-3}=\frac{z-1}{5}$
(d) None of these
113.The angle between the lines $\frac{x+4}{1}=\frac{y-3}{2}=\frac{z+2}{3}$ and $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$ is
(a) $\sin ^{-1}\left(\frac{1}{7}\right)$
(b) $\cos ^{-1}\left(\frac{2}{7}\right)$
(c) $\cos ^{-1}\left(\frac{1}{7}\right)$
(d) None of these
114.A sphere increases its volume at the rate of $\pi \mathrm{cm}^{3} / \mathrm{s}$. The rate at which its surface area increases, when the radius is 1 cm is
(a) $2 \pi \mathrm{sqcm} / \mathrm{s}$
(b) $\pi \mathrm{sqcm} / \mathrm{s}$
(c) $\frac{3 \pi}{2} \mathrm{sqcm} / \mathrm{s}$
(d) $\frac{\pi}{2} \mathrm{sqcm} / \mathrm{s}$
115. The area enclosed by $y=3 x-5, y=0, x=3$ and $x=5$ is
(a) 12 sq units
(b) 13 sq units
(c) $13 \frac{1}{2}$ sq units
(d) 14 sq units
116.The solution of the differential equation $\frac{d y}{d x}=y \tan x-2 \sin x$, is
(a) $y \sin x=C+\sin 2 x$
(b) $y \cos x=C+\frac{1}{2} \sin 2 x$
(c) $y \cos x=C-\sin 2 x$
(d) $y \cos x=C+\frac{1}{2} \cos 2 x$
117.The value of $\left|\frac{1+i \sqrt{3}}{\left(1+\frac{1}{i+1}\right)^{2}}\right|$ is
(a) 20
(b) 9
(c) $\frac{5}{4}$
(d) $\frac{4}{5}$
118. The sum of the coefficients in the expansion of $\left(1+x-3 x^{2}\right)^{3148}$ is
(a) 8
(b) 7
(c) 1
(d) -1
119.If sum of the series $\sum_{n=0}^{\infty} r^{n}=S$ for $|r|<1$, then sum of the series $\sum_{n=0}^{\infty} r^{2 n}$, is
(a) S^{2}
(b) $\frac{S^{2}}{2 S+1}$
(c) $\frac{2 S}{S^{2}-1}$
(d) $\frac{S^{2}}{2 S-1}$
120.The equation of the ellipse whose foci are $(\pm 2,0)$ and eccentricity $1 / 2$, is
(a) $\frac{x^{2}}{12}+\frac{y^{2}}{16}=1$
(b) $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$
(c) $\frac{x^{2}}{16}+\frac{y^{2}}{8}=1$
(d) None of these

Physics

Multiple Choice Questions with one correct answer. A correct answer carries 1 mark. No negative mark.

121. A planet moving around sun sweeps area A_{1} in 2 days, A_{2} in 3 days and A_{3} in 6 days. Then the relation between A_{1}, A_{2} and A_{3} is

(a) $3 A_{1}=2 A_{2}=A_{3}$
(b) $2 A_{1}=3 A_{2}=6 A_{3}$
(c) $3 A_{1}=2 A_{2}=6 A_{3}$
(d) $6 A_{1}=3 A_{2}=2 A_{3}$
122.Identical springs of steel and copper $\left(Y_{\text {steel }}>Y_{\text {copper }}\right)$ are equally stretched. Then
(a) Less work is done on copper spring
(b) Less work is done on steel spring
(c) Equal work is done on both the springs
(d) Data is incomplete
123.A solid sphere is rotating in free space. If the radius of sphere is increased keeping mass same which one of the following will not be affected?
(a) Angular velocity
(b) Angular momentum
(c) Moment of inertia
(d) Rotational kinetic energy
124.Streamline flow is more likely for liquids with
(a) High density and low viscosity
(b) Low density and high viscosity
(c) High density and high viscosity
(d) Low density and low viscosity
122. $0.1 \mathrm{~m}^{3}$ of water at $80^{\circ} \mathrm{C}$ is mixed with $0.3 \mathrm{~m}^{3}$ of water at $60^{\circ} \mathrm{C}$. The final temperature of the mixture is
(a) $65^{\circ} \mathrm{C}$
(b) $70^{\circ} \mathrm{C}$
(c) $60^{\circ} \mathrm{C}$
(d) $75^{\circ} \mathrm{C}$
126.The velocity of the molecules of a gas at temperature 120 K is v. At what temperature will the velocity be $2 v$?
(a) 120 K
(b) 240 K
(c) 480 K
(d) 1120 K
127.One mole of an ideal monoatomic gas is heated at a constant pressure of one atmosphere from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Then the change in the internal energy is
(a) 6.56 joules
(b) 8.32×10^{2} joules
(c) 12.48×10^{2} joules
(d) 20.80 joules
128.A particle is executing a simple harmonic motion of amplitude a. Its potential energy is maximum when the displacement from the position of the maximum kinetic energy is
(a) 0
(b) $\pm a$
(c) $+\frac{a}{2}$
(d) $-\frac{a}{2}$
129.Three sound waves of equal amplitudes have frequencies $(n-1), n,(n+1)$. They superimpose to give beats. The number of beats produced per second will be
(a) 1
(b) 4
(c) 3
(d) 2
130.Two charges are at a distance d apart. If a copper plate of thickness $\frac{d}{2}$ is kept between them, then effective force will be
(a) $\frac{F}{2}$
(b) $\sqrt{2} F$
(c) $2 F$
(d) Zero
123. The electric field due to an extremely short dipole at distance r from it is proportional to
(a) $\frac{1}{r}$
(b) $\frac{1}{r^{2}}$
(c) $\frac{1}{r^{3}}$
(d) $\frac{1}{r^{4}}$
124. A hollow conducting sphere of radius R has a charge $(+Q)$ on its surface. What is the electric potential within the sphere at a distance $r=\frac{R}{3}$ from its centre
(a) Zero
(b) $\frac{3}{4 \pi \varepsilon_{0}} \frac{Q}{R}$
(c) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R}$
(d) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R^{2}}$
125. An infinite number of charges, each of charge $1 \mu \mathrm{C}$, are placed on the x-axis with coordinates $x=1,2,4,8, \ldots \infty$ (in m). If a charge of 1 C is kept at the origin, then what is the net force acting on 1C charge?
(a) 9000 N
(b) 12000 N
(c) 24000 N
(d) 36000 N
134.A particle A has a charge q and particle B has charge $+4 q$ with each of them having the mass m, when allowed to fall from rest through same potential difference. The ratio of their speeds $v_{A}: v_{B}$ will be
(a) $4: 1$
(b) $1: 4$
(c) $1: 2$
(d) $2: 1$
135.Equivalent capacitance between A and B is
(a) $8 \mu \mathrm{~F}$
(b) $6 \mu \mathrm{~F}$
(c) $26 \mu \mathrm{~F}$
(d) $\frac{10}{3} \mu \mathrm{~F}$

126. A cube of side ' b ' has a charge q at each of its vertices. The electric field at the centre of the cube is
(a) $\frac{4 q}{3 \pi \varepsilon_{0} b^{2}}$
(b) $\frac{3 q}{4 \pi \varepsilon_{0} b^{2}}$
(c) $\frac{2 q}{\pi \varepsilon_{0} b^{2}}$
(d) Zero
137.Two small similar metal spheres A and B having charges $4 q$ and $-4 q$, when placed at a certain distance apart, exert an electric force F on each other. When another identical uncharged sphere C, first touched with A then with B and then removed to infinity, the force of interaction between A and B for the same separation will be
(a) $\frac{F}{2}$
(b) $\frac{F}{8}$
(c) $\frac{F}{16}$
(d) $\frac{F}{32}$
138.In the circuit shows in figure, the current in 4Ω resistance is 1.2 A . What is the potential difference between B and C ?

(a) 3.6 volt
(b) 6.3 volt
(c) 1.8 volt
(d) 2.4 volt
127. When no current is passed through a conductor,
(a) The free electrons do not move
(b) The average speed of a free electron over a large period of time is not zero
(c) The average velocity of a free electron over a large period of time is zero
(d) The average of the velocities of all the free electrons at an instant is non-zero
140.A piece of copper and another of germanium are cooled from room temperature to 50 K . The resistance of
(a) Each of them decreases
(b) Copper decreases and germanium increases
(c) Each of them increases
(d) Copper increases and germanium decreases
141.A metal wire is subjected to a constant potential difference. When the temperature of the metal wire increases, the drift velocity of the electron in it
(a) Increases, thermal velocity of the electron increases
(b) decreases, thermal velocity of the electron increases
(c) Increases, thermal velocity of the electron decreases
(d) Decreases, thermal velocity of the electron decreases
142.The unit of specific resistance is
(a) $\Omega \mathrm{m}$
(b) $\Omega^{-1} \mathrm{~m}^{-1}$
(c) Ω^{-1}
(d) $\Omega \mathrm{m}^{-1}$
143.A cell of internal resistance r is connected across an external resistance $n r$. Then the ration of the terminal voltage to the emf of the cell is
(a) $\frac{1}{n}$
(b) $\frac{1}{n+1}$
(c) $\frac{n}{n+1}$
(d) $\frac{n-1}{n}$
144.Two identical wires A and B, each of length ' l ', carry the same current I. Wire A is bent into a circle of radius R and wire B is bent to form a square of side ' a '. If B_{A} and B_{B} are the values of magnetic field at the centres of the circle and square respectively, then the ratio $\frac{B_{A}}{B_{B}}$ is
(a) $\frac{\pi^{2}}{16}$
(b) $\frac{\pi^{2}}{8 \sqrt{2}}$
(c) $\frac{\pi^{2}}{8}$
(d) $\frac{\pi^{2}}{16 \sqrt{2}}$
145.A moving coil galvanometer has N number of turns in a coil of effective area A, it carries a current I. The magnetic field B is radial. The torque acting on the coil is
(a) $N A^{2} B^{2} I$
(b) $N A B I^{2}$
(c) $N^{2} A B I$
(d) NABI
146.The distance between the wires of electric mains is 12 cm . These wires experience 4 mg wt per unit length. The value of current flowing in each wire will be
(a) 4.85 A
(b) 0
(c) $4.85 \times 10^{-2} \mathrm{~A}$
(d) $4.85 \times 10^{-4} \mathrm{~A}$
147.A ring of radius R, made of an insulating material carries a charge Q uniformly distributed on it. If the ring rotates about the axis passing through its centre and normal to plane of the ring with constant angular speed ω, then the magnitude of the magnetic moment of the ring is
(a) $Q \omega R^{2}$
(b) $\frac{1}{2} Q \omega R^{2}$
(c) $Q \omega^{2} R$
(d) $\frac{1}{2} Q \omega^{2} R$
148.The horizontal component of the Earth's magnetic field is 3.6×10^{-5} tesla where the dip angle is 60°. The magnitude of the Earth's magnetic field is
(a) 2.8×10^{-4} tesla
(b) 2.1×10^{-4} tesla
(c) 7.2×10^{-5} tesla
(d) 3.6×10^{-5} tesla
149.A deuteron of kinetic energy 50 keV is describing a circular orbit of radius 0.5 metre in a plane perpendicular to the magnetic field B. The kinetic energy of the proton that describes a circular orbit of radius 0.5 metre in the same plane with the same B is
(a) 25 keV
(b) 50 keV
(c) 200 keV
(d) 100 keV
150.Susceptibility is positive and large for a
(a) paramagnetic substance
(b) ferromagnetic substance
(c) diamagnetic substance
(d) non magnetic substance
151.In a coil of resistance 10Ω, the induced current developed by changing magnetic flux through it, is shown in figure as a function of time. The magnitude of change in flux through the coil in weber is
(a) 8
(b) 2
(c) 6
(d) 4

128. Two coils have a mutual inductance 0.005 H . The current changes in the first coil according to equation $I=I_{0} \sin \omega t$, where $I_{0}=10 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} \mathrm{s}^{-1}$. The maximum value of e.m.f. in the second coil is
(a) 2π
(b) 5π
(c) π
(d) 4π
153.A coil has resistance 30 ohm and inductive reactance 20 ohm at 50 Hz frequency. If an ac source, of 200 volt, 100 Hz , is connected across the coil, the current in the coil will be
(a) 4.0 A
(b) 8.0 A
(c) $\frac{20}{\sqrt{13}} \mathrm{~A}$
(d) 2.0 A
154.In an AC circuit the voltage applied is $E=E_{0} \sin \omega t$. The resulting current in the circuit is $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$. The power consumption in the circuit is given by
(a) $P=\sqrt{2} E_{0} I_{0}$
(b) $P=\frac{E_{0} I_{0}}{\sqrt{2}}$
(c) $P=$ zero
(d) $P=\frac{E_{0} I_{0}}{2}$
129. An AC voltage is applied to a resistance R and an inductor L in series. If R and the inductive reactance are both equal to 3Ω, the phase difference between the applied voltage and the current in the circuit is
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{2}$
(d) Zero
156.The electromagnetic waves
(a) Travel with the speed of sound
(b) Travel with the same speed in all media
(c) Travel in free space with the speed of light
(d) Do not travel through a medium
157.A ray of light passes through an equilateral prism such that the angle of incidence is equal to the angle of emergence and the latter is equal to $\frac{3}{4}$ th of angle of prism. The angle of deviation is
(a) 25°
(b) 30°
(c) 45°
(d) 35°
158.The magnifying power of a telescope is 9 . When it is adjusted for parallel rays the distance between the objective and eyepiece is 20 cm . The focal length of lenses are
(a) $10 \mathrm{~cm}, 10 \mathrm{~cm}$
(b) $15 \mathrm{~cm}, 5 \mathrm{~cm}$
(c) $18 \mathrm{~cm}, 2 \mathrm{~cm}$
(d) $11 \mathrm{~cm}, 9 \mathrm{~cm}$
159.Identify the wrong sign convention.
(a) The magnification for virtual image formed by a convex lens is positive
(b) The magnification for real image formed by a convex lens is negative
(c) The height measured normal to the principal axis upwards is positive
(d) The magnification for virtual image formed by a concave lens is negative
130. When plane face of plano-convex lens is silvered, it behaves as a concave mirror of focal length 30 cm . But when its curved surface is silvered, it behaves as a concave mirror of focal length 10 cm . The refractive index of lens material is
(a) 1.25
(b) 1.33
(c) 1.732
(d) 1.5
161.Huygens's concept of secondary wave
(a) Allows us to find the focal length of a thick lens
(b) Is a geometrical method to find a wave front
(c) Is used to determine the velocity of light
(d) Is used to explain polarisation
162.The graph showing the dependence of intensity of transmitted light on the angle between polariser and analyser, is
(a)

(b)

(c)

(d)

131. Cathode ray consists of
(a) Photons
(b) Electrons
(c) Protons
(d) α-particles
164.Photoelectric emission is observed from a metallic surface for frequencies v_{1} and v_{2} of the incident light rays $\left(v_{1}>v_{2}\right)$. If the maximum values of kinetic energy of the photoelectrons emitted in two cases are in the ratio of $1: k$, then the threshold frequency of the metallic surface is
(a) $\frac{v_{1}-v_{2}}{k-1}$
(b) $\frac{k v_{1}-v_{2}}{k-1}$
(c) $\frac{k v_{2}-v_{1}}{k-1}$
(d) $\frac{v_{2}-v_{1}}{k}$
165.Rutherford's atomic model was unstable because
(a) Nuclei will break down
(b) Electrons do not remain in orbit
(c) Orbiting electrons radiate energy
(d) Electrons are repelled by the nucleus
166.According to Bohr's model of hydrogen atom
(a) The linear velocity of the electron is quantised.
(b) The angular velocity of the electron is quantised.
(c) The linear momentum of the electrons is quantised.
(d) The angular momentum of the electron is quantised.
167.As per Bohr model, the minimum energy (in eV) required to remove an electron from the ground state of doubly ionized Li atom $(Z=3)$ is
(a) 1.51
(b) 13.6
(c) 40.8
(d) 122.4
132. The radius of a nucleus is
(a) Directly proportional to its mass number
(b) Inversely proportional to its atomic weight
(c) Directly proportional to the cube root of its mass number
(d) None of these
133. Nuclear force exists between
(a) Neutron-neutron
(b) Proton-proton
(c) Neutron-proton
(d) all of these
170.The mass of a ${ }_{3}^{7} \mathrm{Li}$ nucleus is $0.042 u$ less than the sum of masses of all its nucleons. The binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ nucleus is nearly
(a) 46 MeV
(b) 5.6 MeV
(c) 3.9 MeV
(d) 23 MeV
134. Which of the junction diodes shown below are forward biased?
(a)

(b)

(c)

(d)

172.If the ratio of the concentration of electrons to that of holes in a semiconductor is $\frac{7}{5}$ and the ratio of currents is $\frac{7}{4}$, then what is the ratio of their drift velocities?
(a) $\frac{5}{8}$
(b) $\frac{4}{5}$
(c) $\frac{5}{4}$
(d) $\frac{4}{7}$
173.The reading of the ammeter for a silicon diode in the given circuit is
(a) 0
(b) 15 mA
(c) 11.5 mA
(d) 13.5 mA

174.Two straight long conductors $A O B$ and $C O D$ are perpendicular to each other and carry currents i_{1} and i_{2}. The magnitude of the magnetic field at a point P at a distance a from the point O in a direction perpendicular to the plane $A B C D$ is
(a) $\frac{\mu_{0}}{2 \pi a}\left(i_{1}+i_{2}\right)$
(b) $\frac{\mu_{0}}{2 \pi a}\left(i_{1}-i_{2}\right)$
(c) $\frac{\mu_{0}}{2 \pi a}\left(i_{1}^{2}+i_{2}^{2}\right)^{1 / 2}$
(d) $\frac{\mu_{0}}{2 \pi a} \frac{i_{1} i_{2}}{\left(i_{1}+i_{2}\right)}$
175.The velocity v of a particle at time t is given by $v=a t+\frac{b}{t+c}$, where a, b and c are constant. The dimensions of a, b and c are respectively
(a) $\left[L^{2}\right],[T]$ and $\left[L T^{2}\right]$
(b) $\left[L T^{2}\right],[L T]$ and $[L]$
(c) $[L],[L T]$ and $\left[T^{2}\right]$
(d) $\left[L T^{-2}\right],[L]$ and $[T]$
176.A ball is dropped from a bridge at a height of 176.4 m over a river. After 2 s , a second ball is thrown straight downwards. What should be the initial velocity of the second ball so that both hit the water simultaneously?
(a) $2.45 \mathrm{~m} \mathrm{~s}^{-1}$
(b) $49 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $14.5 \mathrm{~m} \mathrm{~s}^{-1}$
(d) $24.5 \mathrm{~m} \mathrm{~s}^{-1}$
177.If the relation between the range R and time of flight T of a projectile is given as $R=5 T^{2}$, the value of angle of projection is
(a) 45°
(b) 15°
(c) 60°
(d) 90°
178.A body of mass 10 kg is acted upon by two perpendicular forces, 6 N and 8 N . The resultant acceleration of the body is
(a) $1 \mathrm{~ms}^{-2}$ at an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$ w.r.t. 8 N force
(b) $0.2 \mathrm{~m} \mathrm{~s}^{-2}$ at an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$ w.r.t. 8 N force
(c) $1 \mathrm{~m} \mathrm{~s}^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$ w.r.t. 8 N force
(d) $0.2 \mathrm{~m} \mathrm{~s}^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$ w.r.t. 8 N force
135. Which one of the following statement is true?
(a) Momentum is conserved in elastic collisions but not in inelastic collisions
(b) Total kinetic energy is conserved in elastic collisions but momentum is not conserved in elastic collisions
(c) Total kinetic energy is not conserved but momentum is conserved in inelastic collisions
(d) Kinetic energy and momentum both are conserved in all types of collisions
180.According to the principle of conservation of angular momentum, if moment of inertia of a rotating body decreases, then its angular velocity
(a) Decreases
(b) Increases
(c) Remains constant
(d) Becomes zero
