1. Copper is extracted from copper pyrites by
(a) Thermal decomposition
(b) Reduction by coke
(c) Electrometallurgy
(d) Auto reduction

Ans: (d)
Sol: Copper extracted from copper pyrites by auto reduction
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
2. Function of potassium ethylxanthate in froth floatation process is to make the ore
(a) Lighter
(b) Hydrophobic
(c) Hydrophilic
(d) Heavier

Ans: (b)
Sol: Potasium ethylxanthate being collector in the froth flotation process enhances the non-wettability of the ore particles i.e. it makes the ore hydrophobic.
3. Sulphide ore on roasting gives a gas $X . X$ reacts with $C l_{2}$ in the presence of activated charcoal to give $Y . Y$ is:
(a) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
(b) $\mathrm{S}_{2} \mathrm{Cl}_{2}$
(c) SCl_{6}
(d) SOCl_{2}

Ans: (a)
Sol: Sulphide ore $+\mathrm{O}_{2} \xrightarrow{\text { Roasting }} \underset{X}{\mathrm{SO}_{2}}$
$\mathrm{SO}_{2}+\mathrm{Cl}_{2} \rightarrow \underset{Y}{\mathrm{SO}_{2} \mathrm{Cl}_{2}}$
4. Aqueous solution of a salt (A) forms a dense white precipitate with BaCl_{2} solution. The precipitate dissolves in dilute HCl to produce a gas (B) which decolourises acidified KMnO_{4} solution
A and B respectively are:
(a) $\mathrm{BaSO}_{3}, \mathrm{SO}_{2}$
(b) $\mathrm{BaSO}_{4}, \mathrm{H}_{2} \mathrm{~S}$
(c) $\mathrm{BaSO}_{3}, \mathrm{H}_{2} \mathrm{~S}$
(d) $\mathrm{BaSO}_{4}, \mathrm{SO}_{2}$

Ans: (a)
Sol: $\mathrm{MSO}_{3}+\mathrm{BaCl}_{2}(a q) \rightarrow \mathrm{BaSO}_{3} \downarrow+\mathrm{MCl}_{2}$
$\mathrm{BaSO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{3}$
$\mathrm{H}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
SO_{2} decolourises acidified KMnO_{4} solution
5. Bond angle in PH_{4}^{+}is more than that of PH_{3}. This is because
(a) Lone pair-bond pair repulsion exists in PH_{3}
(b) PH_{4}^{+}has square planar structure
(c) PH_{3} has planar trigonal structure
(d) Hybridisation of P changes when PH_{3} is converted to PH_{4}^{+}

Ans: (a)
Sol: PH_{4}^{+}has tetrahedral geometry whereas PH_{3} has Pyramidal shape.
This is because of lone pair -bond pair repulsion
6. Incorrectly matched pair is:

(a) XeO_{3}	-	pyramidal
(b) XeF_{4}	-	tetrahedral
(c) XeF_{6}	-	disorted octahedral
(d) XeOF_{4}	-	square pyramidal

Ans: (b)
Sol: XeF_{4} has square planar structure because of the presence of two lone pair electrons
7. Phosphorus pentachloride
(a) On hydrolysis gives an oxo acid of phosphorus which is tribasic
(b) On hydrolysis gives an oxo acid of phosphorus which is a good reducing agent
(c) Has all the five equivalent bonds
(d) Exists as an ionic solid in which cation has octahedral structure and anion has tetrahedral structure

Ans: (a)
Sol: PCl_{5} in solid state exists as $\left[\mathrm{PCl}_{6}\right]^{-}$which is octahedral and $\left[\mathrm{PCl}_{4}\right]^{+}$which is tetrahedral.
PCl_{5} on hydrolysis gives oxo acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ which is tribasic and not reducing.
8. Identify the set of paramagnetic ions among the following:
(a) $\mathrm{V}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ti}^{4+}$
(b) $\mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$
(c) $\mathrm{Ti}^{3+}, \mathrm{Cu}^{2+}, \mathrm{Mn}^{3+}$
(d) $S c^{3+}, T i^{3+}, V^{3+}$

Ans: (c)
Sol: $T i^{3+}\left(3 d^{1}\right), C u^{2+}\left(3 d^{9}\right)$ and $M n^{3+}\left(3 d^{4}\right)$ have unpaired electrons and hence paramagnetic.
Whereas $S c^{3+}\left(3 d^{o}\right), T i^{4+}\left(3 d^{o}\right)$ and $Z n^{2+}\left(3 d^{10}\right)$ have no unpaired electrons and diamagnetic
9. How many moles of acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is required to liberate 6 moles of I_{2} from an aqueous solution of I^{-}?
(a) 2
(b) 1
(c) 0.25
(d) 0.5

Ans: (a)
Sol: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+7 \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{KI} \rightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
1 Mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ liberates 3 Moles of I_{2}
$\therefore 6$ Moles of I_{2} is liberated by 2 mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
10. $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ and CuCl_{2} in aqueous medium
(a) CuCl_{2} is more stable than $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$
(b) Stability of $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ is equal to stability of CuCl_{2}
(c) Both are unstable
(d) $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ is more stable than CuCl_{2}

Ans: (a)
Sol: Cu^{2+} ion is more stable than Cu^{+}ion in aqueous solution
11. The Co-ordination number of Fe and Co in the complex ions, $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ and $\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-}$ are respectively:
(a) 3 and 4
(b) 6 and 8
(c) 4 and 6
(d) 6 and 4

Ans: (d)
Sol: $\mathrm{C} . \mathrm{N}$ of Fe in $\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ is 6
C.N of Co in $\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-}$ is 4
12. Number of stereoisomers exhibited by $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$is
(a) 4
(b) 2
(c) 5
(d) 3

Ans: (d)
Sol: $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$shows two geometrical isomers cis $-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$and trans $-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{-1}$ Cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$shows optical isomerism and has two isomers

Total number of isomers $=3$
13. Give the IUPAC name of $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$ is
(a) Tetra ammine platinum (o) tetra chloride platinum (IV)
(b) Tetra ammine palatinate (II) tetra chlorido platinum (II)
(c) Tetra ammine palatinate (o) tetra chlorido platinum (IV)
(d) Tetra ammine platinum (II) tetra chlorido palatinate (II)

Ans: (d)
Sol: The IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$ is tetraammineplatinum(II) tetrachloridoplatinate(II)
14. Prolonged exposure of chloroform in humans may cause damage to liver. It is due to the formation of the following compound
(a) CCl_{4}
(b) COCl_{2}
(c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(d) Cl_{2}

Ans: (b)
Sol: Chloroform easily gets converted to COCl_{2} which damages liver.
15. Which of the following halide shows highest reactivity towards $S_{N} 1$ reaction?
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{I}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$

Ans: (a)
Sol: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$ undergo $\mathrm{S}_{\mathrm{N}} 1$ reaction as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}$ion formed is more stable.
16. In the reaction

The number of possible isomers for the organic compound X is
(a) 4
(b) 5
(c) 3
(d) 2

Ans: (d)
Sol:

It has 2 isomers n-Butane and Isobutane
The number of isomers are two.
17. Which of the following on heating gives an ether as major products?
$\mathrm{P}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{CH}_{3} \mathrm{ONa}$
$Q: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{CH}_{3} \mathrm{Br}$
$\mathrm{R}:\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{ONa}$
$\mathrm{S}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCl}+\mathrm{CH}_{3} \mathrm{ONa}$
(a) Both R and S
(b) Both P and R
(c) Both Q and S
(d) Both P and Q

Ans: (d)
Sol: $\mathrm{P}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{CH}_{3} \mathrm{ONa} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}+\mathrm{NaBr}$
$Q: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{CH}_{3} \mathrm{Br} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{O}-\mathrm{CH}_{3}+\mathrm{NaBr}$
Reaction in R and S do not yield ether as the major product
18. The steps involved in the conversion of propan-2-ol to propan-1-ol are in the order
(a) Dehydration, addition of HBr , heating with aq. KOH
(b) Heating with PCl_{5}, heating with alc. KOH , acid catalysed addition of water
(c) Heating with PCl_{5}, heating with alc. KOH , hydroboration oxidation
(d) Dehydration, addition of HBr in presence of peroxide, heating with alc. KOH

Ans: (c)
Sol:

19. Which of the following is the strongest base?
(a) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(b) Cl^{-}
(c) OH^{-}
(d) $\mathrm{CH}_{3} \mathrm{O}^{-}$

Ans: (d)
Sol: Acidic Nature: $\mathrm{HCl}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{CH}_{3} \mathrm{OH}-$
Applying Bronsted- Lowry acid base theory
$\mathrm{Cl}^{-}<\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{OH}^{-}<\mathrm{CH}_{3} \mathrm{O}^{-}$
$\therefore \mathrm{CH}_{3} \mathrm{O}^{-} \rightarrow$ Strongest base
20.

The product ' P ' is
(a)

(b)

(c)

(d)

Ans: (c)
Sol:

Cross aldol condensation
21. Which of the following has the lowest boiling point?
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(c) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
(d) HCOOH

Ans: (c)
Sol: Ethers show lowest boiling point due to absence of hydrogen bonds.
22. The carbonyl compound that does not undergo aldol condensation is
(a) Acetone
(b) Di chloro acetaldehyde
(c) Tri chloro acetaldehyde
(d) Acetaldehyde

Ans: (c)
Sol: Trichloroacetaldehyde $\left(\mathrm{CCl}_{3} \mathrm{CHO}\right)$ has no ' α ' hydrogen. Hence does not undergo aldol condensation.
23.

The final product R is
(a)

(b)

(c)

(d)

Ans: (b)
Sol:

24. Hinsberg's reagent is
(a) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} /$ pyridine
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{NH}_{2}$
(d) $\mathrm{CH}_{3} \mathrm{COCl} /$ pyridine

Ans: (b)
Sol: Hinsberg reagent is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{Cl}$
25. Which one of the following vitamins is not stored in adipose tissue?
(a) A
(b) B_{6}
(c) D
(d) E

Ans: (b)
Sol: Vitamin B_{6} is water soluble. Hence it is not stored in adipose tissue.
26. Hypothyroidism is caused by the deficiency of
(a) Vitamin $B-12$
(b) Adrenalin
(c) Thyroxine
(d) Glucocorticoid

Ans: (c)
Sol: Hypothyroidism is caused by the deficiency of Thyroxine.
27. $C_{1}-C_{4}$ glycosidic bond is NOT found in
(a) Maltose
(b) Sucrose
(c) Lactose
(d) Starch

Ans: (b)
Sol: $C_{1}-C_{4}$ glycosidic bond is found in lactose, maltose and starch (amylose).
$C_{1}-C_{2}$ glycosidic bond is found in sucrose.
28. Which of the following polymer has strongest intermolecular forces of attraction?
(a) Neoprene
(b) Terylene
(c) Polythene
(d) Polystyrene

Ans: (b)
Sol: Terylene being polyester has strongest intermolecular forces of attraction (hydrogen bonds).
29. Which of the following monomers can undergo condensation polymerization?
(a) Styrene
(b) Glycine
(c) Isoprene
(d) Propene

Ans: (b)
Sol: Glycine being a compound with two functional groups undergoes condensation polymerization.
30. A food additive that acts as an antioxidant is
(a) BHA
(b) Saccharin
(c) Sugar syrup
(d) Salt

Ans: (a)
Sol: BHA acts as an antioxidant.
31. 0.4 g of dihydrogen is made to react with 7.1 g of dichlorine to form hydrogen chloride. The volume of hydrogen formed at 273 K and 1 bar pressure is
(a) 9.08 L
(b) 4.54 L
(c) 90.8 L
(d) 45.4 L

Ans: (b)

Sol: $\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl}$
1 mole 1 mole 2 mole
$\frac{0.4}{2} g \quad \frac{7.1}{71} g$
$0.2 \mathrm{~mol} \quad 0.1 \mathrm{~mol} \quad 0.2$ mole
One mole of HCl gas at 273 K and 1 bar pressure has a volume 22.7 L
$\therefore 0.2$ Mole of HCl at the same condition has a volume. $22.7 \times 02=4.54 \mathrm{~L}$
32. With regard to photoelectric effect, identify the correct statement among the following
(a) Energy of e^{-}ejected increases with the increase in the intensity of incident light
(b) Number of e^{-}ejected increases with the increase in the frequency of incident light
(c) Number of e^{-}ejected increases with the increase in work function
(d) Number of e^{-}ejected increases with the increase in the intensity of incident light

Ans: (d)
Sol: Number of electrons ejected during photo electric effect increases with the increase in the intensity of incident light.
33. The last element of the p-block in $6^{\text {th }}$ period is represented by the outer most electronic configuration
(a) $7 s^{2} 7 p^{6}$
(b) $5 f^{14} 6 d^{10} 7 s^{2} 7 p^{5}$
(c) $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{4}$
(d) $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{6}$

Ans: (d)
Sol: The last element in the $6^{\text {th }}$ period belong to $18^{\text {th }}$ group $(n=6)$ and has an electronic configuration $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{6}$
34. The conjugate base of NH_{3} is
(a) NH_{4}^{+}
(b) $\mathrm{NH}_{4} \mathrm{OH}$
(c) $\mathrm{NH}_{2} \mathrm{OH}$
(d) NH_{2}^{-}

Ans: (d)
Sol: The conjugate base of NH_{3} is NH_{2}^{-}.
35. A gas mixture contains $25 \% \mathrm{He}$ and $75 \% \mathrm{CH}_{4}$ by volume at a given temperature and pressure. The percentage by mass of methane in the mixture is approximately \qquad
(a) 75%
(b) 25%
(c) 92%
(d) 8%

Ans: (c)
Sol: The ratio of He and CH_{4} in the mixture 25% and 75% by volume (same can be extended to moles)

Volume ratio or mole ratio: $25 \%: 75 \%$ or $1: 3$
\therefore mass ratio $1 \times 4: 3 \times 16=4: 48$
$\therefore \%$ of methane by mass $=\frac{48}{52}=92 \%$
36. The percentage of s-character in the hybrid orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}
respectively are
(a) $33.3 \%, 50 \%, 25 \%$
(b) $33.3 \%, 25 \%, 50 \%$
(c) $50 \%, 33.3 \%, 25 \%$
(d) $25 \%, 50 \%, 33.3 \%$

Ans: (c)
Sol:

$$
\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{4}^{+}
$$

Hybridization $s p \quad s p^{2} \quad s p^{3}$
\% s character $\quad 50 \% \quad 33.3 \% \quad 25 \%$
37. The formal charge on central oxygen atom in ozone is
(a) -1
(b) 0
(c) +2
(d) +1

Ans: (d)
Sol:

Formal charge on central oxygen atom in ozone
$=6-2-\frac{1}{2}(6)=+1$
38. When the same quantity of heat is absorbed by a system at two different temperatures T_{1} and T_{2}, such that $T_{1}>T_{2}$, change in entropies are ΔS_{1} and ΔS_{2} respectively. Then
(a) $\Delta S_{1}<\Delta S_{2}$
(b) $\Delta S_{1}=\Delta S_{2}$
(c) $S_{2}>S_{1}$
(d) $\Delta S_{2}<\Delta S_{1}$

Ans: (a)
Sol: $\Delta S_{1}=\frac{Q}{T_{1}} \Delta S_{2}=\frac{Q}{T_{2}}$
$\Delta S_{1} T_{1}=\Delta S_{2} T_{2}$
Since $T_{1}>T_{2}$

$$
\Delta S_{1}<\Delta S_{2}
$$

39. The oxidation number of nitrogen atoms in $\mathrm{NH}_{4} \mathrm{NO}_{3}$ are
(a) $+5,+5$
(b) $-3,+5$
(c) $+3,-5$
(d) $-3,-3$

Ans: (b)
Sol: Oxidation state of N in $\mathrm{NH}_{4} \mathrm{NO}_{3}$
$O . S$ of N in $\mathrm{NH}_{4}^{+} \rightarrow x+4=+1$ or $x=-3$
$O . S$ of N in $\mathrm{NO}_{3}^{-} \rightarrow x+3(-2)=-1$ or $x=+5$
40. A Lewis acid ' X ' reacts with LiAlH_{4} in ether medium to give a highly toxic gas. This gas when heated with NH_{3} gives a compound commonly known as inorganic benzene. The gas is
(a) $\mathrm{B}_{2} \mathrm{O}_{3}$
(b) $B_{2} H_{6}$
(c) $B_{3} N_{3} H_{6}$
(d) $B F_{3}$

Ans: (b)
Sol: $4 \mathrm{BF}_{3}+3 \mathrm{~L}: \mathrm{AIH}_{4} \xrightarrow{\text { ether }} 2 \mathrm{~B}_{2} \mathrm{H}_{6}+3 \mathrm{LiF}+3 \mathrm{AIF}_{3}$
$3 \mathrm{~B}_{2} \mathrm{H}_{6}+6 \mathrm{NH}_{3} \xrightarrow{\Delta} 2 \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}+12 \mathrm{H}_{2}$
41. The oxide of potassium that does not exist is
(a) $\mathrm{K}_{2} \mathrm{O}$
(b) KO_{2}
(c) $\mathrm{K}_{2} \mathrm{O}_{2}$
(d) $\mathrm{K}_{2} \mathrm{O}_{3}$

Ans: (d)
Sol: The oxide of potassium that does not exist in $\mathrm{K}_{2} \mathrm{O}_{3}$
42. The metal that products H_{2} with both dil HCl and $\mathrm{NaOH}(\mathrm{aq})$ is
(a) Zn
(b) $M g$
(c) Ca
(d) Fe

Ans: (a)
Sol: $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \uparrow$
$\mathrm{Zn}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \uparrow$
43. Which of the following is NOT a pair of functional isomers?
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ and $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$ and $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$
(d) $\mathrm{CH}_{3} \mathrm{COOH}$ and HCOOCH_{3}

Ans: (a)
Sol: $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{O}-\mathrm{CH}_{3}$ are metamers not functional isomers.
44. Identify ' X ' in the following reaction

(a)

(b)

(c)

(d)

Ans: (b)

Sol:

45. Which of the following is NOT a greenhouse gas?
(a) $C F C$
(b) CO_{2}
(c) O_{2}
(d) NO_{2}

Ans: (c)
Sol: O_{2} is not a greenhouse gas whereas $\mathrm{NO}_{2} . \mathrm{CFC}$ and CO_{2} are given house gases
46. A metal exists as an oxide with formula $M_{0.96} O$. Metal M can exist as M^{+2} and M^{+3} in its oxide $M_{0.96} O$. The percentage of M^{+3} in the oxide is nearly
(a) 8.3%
(b) 4.6%
(c) 5%
(d) 9.6%

Ans: (a)
Sol: Let x be the amount of M^{+2} in the compound
Then $0.96-x$ is the amount of M^{+3} in the compound
$+2(x)+3(0.96-x)=-2$
$2 x+2.88-3 x=-2$ or $x=0.88$
Amount of $M^{+3}=0.08$
$\therefore \%$ of $M^{+3}=\frac{0.08}{0.96} \times 100=8.3 \%$
47. A metal crystallises in face centred cubic structure with metallic radius $\sqrt{2} \AA$. The volume of the unit cell (in m^{3}) is
(a) 4×10^{-10}
(b) 6.4×10^{-29}
(c) 4×10^{-9}
(d) 6.4×10^{-30}

Ans: (b)
Sol: For $f c c$ lattice
$4 r=\sqrt{2} a$ or $a=\frac{4 r}{\sqrt{2}}$
Volume of the cube $=a^{3}=\left(\frac{4 r}{\sqrt{2}}\right)^{3}=\frac{64 \times(\sqrt{2})^{3} \times\left(10^{-10}\right)^{3}}{(\sqrt{2})^{3}}=64 \times 10^{-30} \mathrm{~m}^{3}=6.4 \times 10^{-29} \mathrm{~m}^{3}$
48. Silicon doped with gallium forms
(a) n-type semiconductor
(b) both n and p type semiconductor
(c) an intrinsic semiconductor
(d) p-type semiconductor

Ans: (d)
Sol: Silicon doped with gallium (trivalent) forms p-type semiconductor
49. The pair of electrolytes that possess same value for the constant (A) in the Debye - Huckel -

Onsagar equation, $\lambda_{m}=\lambda_{m}^{\circ}-A \sqrt{C}$ is
(a) $\mathrm{MgSO}_{4}, \mathrm{NaSO}_{4}$
(b) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaBr}$
(c) $\mathrm{NaBr}, \mathrm{MgSO}_{4}$
(d) $\mathrm{NaCl}, \mathrm{CaCl}_{2}$

Ans: (b)
Sol: The constant ' A ' in the Debye, Huckel and Onsager equation depends on the type of the salt.
i.e. all electrolytes of a particular type have the same value for the constant A
$\therefore \mathrm{NH}_{4} \mathrm{Cl}$ and NaBr (A-B type salt) have same value for ' A '.
50. Which of the following pair of solutions is isotonic?
(a) $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ and 0.015 M NaCl
(b) $0.001 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $0.01 \mathrm{M} \mathrm{BaCl}_{2}$
(c) 0.001 M CaCl 2 and $0.001 \mathrm{M} \mathrm{Al} 2\left(\mathrm{SO}_{4}\right)_{3}$
(d) $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ and $0.001 \mathrm{M} \mathrm{CaCl}_{2}$

Ans: (a)
Sol: $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ and 0.015 M NaCl have same ionic concentration. Hence they form isotonic solutions.
51. Solute ' X ' dimerises in water to the extent of $80 \% .2 .5 \mathrm{~g}$ of ' X ' in 100 g of water increases the boiling point by $0.3^{\circ} \mathrm{C}$. The molar mass of ' X ' is $\left[K_{b}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$
(a) 13
(b) 52
(c) 65
(d) 26

Ans: (d)
Sol: $\alpha_{\text {ass }}=\frac{1-n}{1-\frac{1}{n}} \times 100$ or $80=\frac{1-i}{1-\frac{1}{2}} \times 100: i=0.6$
$\Delta T_{b}=\frac{i \times k_{b} \times w_{2} \times 1000}{M_{2} \times W_{1}}$
or $M_{2}=\frac{0.6 \times 0.52 \times 2.5 \times 1000}{0.3 \times 100}=26$
52. Given $E_{\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}}^{\circ}=+0.76 \mathrm{~V}$ and $E_{I_{2} / I^{-}}^{\circ}=+0.55 \mathrm{~V}$. The equilibrium constant for the reaction taking place in galvanic cell consisting of above two electrodes is $\left[\frac{2.303 R T}{F}=0.06\right]$
(a) 1×10^{7}
(b) 1×10^{9}
(c) 3×10^{8}
(d) 5×10^{12}

Ans: (a)
Sol: E° cell $=0.76-0.55=0.21 \mathrm{~V}$
$E_{\text {cell }}^{\circ}=\frac{0.06}{n} \log K_{c}$
$0.21=\frac{0.06}{2} \log K_{C}$
$\log K_{c}=\frac{2 \times 0.21}{0.06}=7$ or $K_{c}=1 \times 10^{7}$
53. If an aqueous solution of $N a F$ is electrolyzed between inert electrodes, the product obtained at anode is
(a) F_{2}
(b) H_{2}
(c) Na
(d) O_{2}

Ans: (d)
Sol: The product obtained at anode when aqueous NaF electrolysed is oxygen $\left(\mathrm{O}_{2}\right)$.
54. In which of the following cases a chemical reaction is possible?
(a) $\mathrm{ZnSO}_{4(a q)}$ is placed in a copper vessel
(b) AgNO_{3} solution is stirred with a copper spoon
(c) Conc. HNO_{3} is stored in a platinum vessel
(d) gold ornaments are washed with dil HCl

Ans: (b)
Sol: Standard reduction potential of $\operatorname{Ag}\left(E^{\circ}=0.8 \mathrm{~V}\right)$ is higher than that of copper $\left(E^{\circ}=0.34 \mathrm{~V}\right)$
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
55. The time required for 60% completion of a first order reaction is 50 min . The time required for 93.6\% completion of the same reaction will be
(a) 100 min
(b) 83.8 min
(c) 50 min
(d) 150 min

Ans: (d)
Sol: $k=\frac{2.303}{t} \log \frac{a}{a-x}=\frac{2.303}{50} \log \frac{100}{40}$
$t_{93.6}=\frac{2.303}{\frac{2.303}{50} \times 0.398} \times \log \frac{100}{6.4}$
$=149.5$ or 150 min
56. For an elementary reaction $2 A+3 B \longrightarrow 4 C+D$ the rate of appearance of C at time ' t ' is $2.8 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~S}^{-1}$. Rate of disappearance of B at ' t ' t will be
(a) $\frac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{molL}^{-1} \mathrm{~S}^{-1}$
(b) $\frac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{molL}^{-1} \mathrm{~S}^{-1}$
(c) $2\left(2.8 \times 10^{-3}\right) \mathrm{molL}^{-1} \mathrm{~S}^{-1}$
(d) $\frac{1}{4}\left(2.8 \times 10^{-3}\right) \mathrm{molL}^{-1} \mathrm{~S}^{-1}$

Ans: (b)
Sol: $2 A+3 B \rightarrow 4 c+D$
$-\frac{1}{3} \frac{d B}{d t}=\frac{1}{4} \frac{d c}{d t}$
$-\frac{d B}{d t}=\frac{3}{4} \frac{d c}{d t}=\frac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} L^{-1} S^{-1}$
57. The rate constant of a reaction is given by $k=P Z e^{-E a / R T}$ under standard notation. In order to speed up the reaction, which of the following factors has to be decreased?
(a) Z
(b) Both Z and T
(c) E_{a}
(d) T

Ans: (c)
Sol: Lower the activation energy, higher will be the reaction rate.
58. A sol of AgI is prepared by mixing equal volumes of $0.1 \mathrm{M} \quad \mathrm{AgNO}_{3}$ and 0.2 M KI , which of the following statement is correct ?
(a) Sol obtained is a negative sol with NO_{3}^{-}adsorbed on AgI
(b) Sol obtained is a positive sol with Ag^{+}adsorbed on AgI
(c) Sol obtained is a positive sol with K^{+}adsorbed on AgI
(d) Sol obtained is a negative sol with I^{-}adsorbed on $A g I$

Ans: (d)
Sol: $\mathrm{AgNO}_{3}+\mathrm{KI} \rightarrow \mathrm{AgI}+\mathrm{KNO}_{3}$
Because of the common ion effect, AgI sol will be negative with adsorption of I^{-}ions
59. During Adsorption of a gas on a solid
(a) $\Delta G<0, \Delta H<0, \Delta S<0$
(b) $\Delta G>0, \Delta H>0, \Delta S>0$
(c) $\Delta G<0, \Delta H<0, \Delta S>0$
(d) $\Delta G<0, \Delta H>0, \Delta S>0$

Ans: (a)
Sol: During adsorption of a gas on solid,
ΔG is -ve or $\Delta G<0$ [Adsorption is spontaneous]
ΔH is -ve or $\Delta H<0$ [Process exothermic]
ΔS is - ve or $\Delta S<0$

Key Answers:

1. d	2. b	3. a	4. a	5. a	6. b	7. a	8. c	9. a	10. a
11. d	12. d	13. d	14. b	15. a	16. d	17. d	18. c	19. d	20. c
21. c	22. c	23. b	24. b	25. b	26. c	27. b	28. b	29. b	30. a
31. b	32. d	33. d	34. d	35. с	36. c	37. d	38. a	39. b	40. b
41. d	42. a	43. a	44. b	45. с	46. a	47. b	48. d	49. b	50. a
51. d	52. a	53. d	54. b	55. d	56. b	57. с	58. d	59. a	

