1. Copper is extracted from copper pyrites by

Chemistry CET Exam 2020

CODE: C-1

	(a) Thermal decomposition		(b) Reduction by coke		
	(c) Electrometallurgy		(d) Auto reduction		
2.	Function of potassium ethy	Function of potassium ethylxanthate in froth floatation process is to make the ore			
	(a) Lighter	(b) Hydrophobic	(c) Hydrophilic	(d) Heavier	
3.	Sulphide ore on roasting given	ves a gas X . X reacts w	ith Cl_2 in the presence of	f activated charcoal to	
	give Y. Y is:				
	(a) SO_2Cl_2	(b) S_2Cl_2	(c) <i>SCl</i> ₆	(d) SOCl ₂	
4.	Aqueous solution of a salt ((A) forms a dense white	precipitate with BaCl ₂ s	solution. The	
	precipitate dissolves in dilu	te <i>HCl</i> to produce a gas	s(B) which decolourises	acidified KMnO ₄	
	solution				
	A and B respectively are:				
	(a) $BaSO_3$, SO_2	(b) $BaSO_4$, H_2S	(c) $BaSO_3$, H_2S	(d) $BaSO_4$, SO_2	
5. Bond angle in PH_4^+ is more than that of PH_3 . This is because					
(a) Lone pair-bond pair repulsion exists in PH ₃					
(b) PH_4^+ has square planar structure					
	(c) PH ₃ has planar trigonal structure				
	(d) Hybridisation of P changes when PH_3 is converted to PH_4^+				
<i>(</i>	. , ,		niverted to TH ₄		
6.	Incorrectly matched pair is: (a) <i>XeO</i> ₃ -	pyramidal			
	(b) XeF ₄ -				
		disorted octahedral			
	(c) XeF ₆ -				
_	(d) <i>XeOF</i> ₄ -	square pyramidal			
7.	Phosphorus pentachloride		and a subject of the sign		
	(a) On hydrolysis gives an oxo acid of phosphorus which is tribasic				
	(b) On hydrolysis gives an oxo acid of phosphorus which is a good reducing agent				
	(c) Has all the five equivalent bonds(d) Exists as an ionic solid in which cation has octahedral structure and anion has tetrahedra				
	structure	one in which eation has	ocurred or actare and	arion no teraneara	
8.	Identify the set of paramagi	netic ions among the foll	owing:		
	, ,	9	(c) Ti^{3+} , Cu^{2+} , Mn^{3+}	(d) Sc^{3+} , Ti^{3+} . V^{3+}	
	, , , , , , , , , , , , , , , , , , , ,			, , , , , , , , , , , , , , , , , , , ,	

9.	How many moles of acid	dified $K_2Cr_2O_7$ is requ	aired to liberate 6 mo	oles of I_2 from an aqueous		
	solution of I^- ?					
	(a) 2	(b) 1	(c) 0.25	(d) 0.5		
10.	Cu_2Cl_2 and $CuCl_2$ in aqu	eous medium				
	(a) $CuCl_2$ is more stable than Cu_2Cl_2					
	(b) Stability of Cu_2Cl_2 is equal to stability of $CuCl_2$					
	(c) Both are unstable					
	(d) Cu_2Cl_2 is more sta	able than CuCl ₂				
11.	The Co-ordination number of Fe and Co in the complex ions, $\left[Fe(C_2O_4)_3\right]^{3-}$ and $\left[Co(SCN)_4\right]^{2-}$					
	are respectively:					
	(a) 3 and 4	(b) 6 and 8	(c) 4 and 6	(d) 6 and 4		
12.	Number of stereoisomers exhibited by $\left[Co(en)_2Cl_2\right]^+$ is					
	(a) 4	(b) 2	(c) 5	(d) 3		
13.	Give the IUPAC name of	$[Pt(NH_3)_4][PtCl_4]$ is				
	(a) Tetra ammine platinum (o) tetra chloride platinum (IV)					
	(b) Tetra ammine palatinate (II) tetra chlorid <mark>o platin</mark> um (II)					
	(c) Tetra ammine palatinate (o) tetra chlorido platinum (IV)					
	(d) Tetra ammine platinum (II) tetra chlorido palatinate (II)					
14.	Prolonged exposure of chloroform in humans may cause damage to liver. It is due to the					
	formation of the following	g compound				
	(a) CCl ₄	(b) COCl ₂	(c) CH_2Cl_2	(d) <i>Cl</i> ₂		
15.	Which of the following halide shows highest reactivity towards $S_N 1$ reaction?					
	(a) $C_6H_5CH_2Cl$		(b) $CH_3 - CH_2Cl$	(b) $CH_3 - CH_2Cl$		
	(c) $CH_3 - CH_2 - CH_$	CH_2I	(d) C_6H_5Cl			
16	In the reaction					

16. In the reaction

The number of possible isomers for the organic compound X is

- (a) 4
- (b) 5
- (c) 3
- (d) 2

17. Which of the following on heating gives an ether as major products?

$$P:C_6H_5CH_2Br+CH_3ONa$$

$$Q: C_6H_5ONa + CH_3Br$$

$$R: (CH_3)_3 C - Cl + CH_3 ONa$$

$$S: C_6H_5CH = CHCl + CH_3ONa$$

- (a) Both R and S
- (b) Both P and R
- (c) Both Q and S
- (d) Both P and Q
- 18. The steps involved in the conversion of propan-2-ol to propan-1-ol are in the order
 - (a) Dehydration, addition of HBr, heating with aq. KOH
 - (b) Heating with PCl₅, heating with alc. KOH, acid catalysed addition of water
 - (c) Heating with PCl₅, heating with alc. KOH, hydroboration oxidation
 - (d) Dehydration, addition of HBr in presence of peroxide, heating with alc. KOH
- 19. Which of the following is the strongest base?

(a)
$$CH_3COO^-$$

(d)
$$CH_3O^-$$

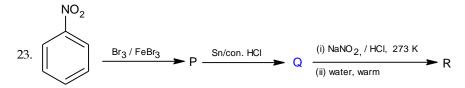
The product 'P' is

21. Which of the following has the lowest boiling point?

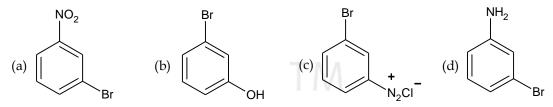
(a)
$$CH_3CH_2OH$$

(b)
$$CH_3 - CH_2 - NH_2$$

(c)
$$CH_3 - O - CH_3$$


- (d) HCOOH
- 22. The carbonyl compound that does not undergo aldol condensation is
 - (a) Acetone

(b) Di chloro acetaldehyde


(c) Tri chloro acetaldehyde

(d) Acetaldehyde

The final product R is

- 24. Hinsberg's reagent is
 - (a) $(CH_3CO)_2O/$ pyridine

(b) $C_6H_5SO_2Cl$

(c) $C_6H_5SO_2NH_2$

- (d) CH₃COCl/ pyridine
- 25. Which one of the following vitamins is not stored in adipose tissue?
 - (a) A

- (b) B_6
- (c) D
- (d) E

- 26. Hypothyroidism is caused by the deficiency of
 - (a) Vitamin B-12
- (b) Adrenalin
- (c) Thyroxine
- (d) Glucocorticoid

- 27. $C_1 C_4$ glycosidic bond is NOT found in
 - (a) Maltose
- (b) Sucrose
- (c) Lactose
- (d) Starch
- 28. Which of the following polymer has strongest intermolecular forces of attraction?
 - (a) Neoprene
- (b) Terylene
- (c) Polythene
- (d) Polystyrene
- 29. Which of the following monomers can undergo condensation polymerization?
 - (a) Styrene
- (b) Glycine
- (c) Isoprene
- (d) Propene

- 30. A food additive that acts as an antioxidant is
 - (a) BHA
- (b) Saccharin
- (c) Sugar syrup
- (d) Salt
- 31. 0.4g of dihydrogen is made to react with 7.1g of dichlorine to form hydrogen chloride. The volume of hydrogen formed at 273K and 1 bar pressure is
 - (a) 9.08L
- (b) 4.54L
- (c) 90.8L
- (d) 45.4L
- 32. With regard to photoelectric effect, identify the correct statement among the following
 - (a) Energy of e^- ejected increases with the increase in the intensity of incident light
 - (b) Number of e^- ejected increases with the increase in the frequency of incident light
 - (c) Number of e^- ejected increases with the increase in work function
 - (d) Number of e^- ejected increases with the increase in the intensity of incident light

33.	he last element of the p-block in 6 th period is represented by the outer most electronic onfiguration			t electronic
	(a) $7s^27p^6$	(b) $5f^{14}6d^{10}7s^27p^5$	(c) $4f^{14}5d^{10}6s^26p^4$	(d) $4f^{14}5d^{10}6s^26p^6$
34.	The conjugate base of NH_3	is	.,	., .
	(a) NH_{Δ}^{+}	(b) <i>NH</i> ₄ <i>OH</i>	(c) <i>NH</i> ₂ <i>OH</i>	(d) NH_2^-
35	() 4	. ,	. , _	. , _
35. A gas mixture contains 25% He and 75% CH_4 by volume at a given temperature and The percentage by mass of methane in the mixture is approximately				serutare and pressure.
	(a) 75%	(b) 25%	(c) 92%	(d) 8%
36.	The percentage of s – character in the hybrid orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+			
	respectively are			
	(a) 33.3%, 50%, 25%		(b) 33.3%, 25%, 50%	
	(c) 50%, 33.3%, 25%		(d) 25%, 50%, 33.3%	
37. The formal charge on central oxygen atom in ozone is				
	(a) -1	(b) 0	(c) +2	(d) +1
38. When the same quantity of heat is absor <mark>bed by</mark> a system at two d				nperatures T_1 and T_2 ,
	such that $T_1 > T_2$, change in entropies are ΔS_1 and ΔS_2 respectively. Then			
	(a) $\Delta S_1 < \Delta S_2$	(b) $\Delta S_1 = \Delta S_2$	(c) $S_2 > S_1$	(d) $\Delta S_2 < \Delta S_1$
39.	The oxidation number of nitrogen atoms in NH_4NO_3 are			
	(a) $+5, +5$	(b) $-3, +5$	(c) $+3, -5$	(d) $-3, -3$
40.	A Lewis acid 'X' reacts with LiAlH ₄ in ether medium to give a highly toxic gas. This gas when			
	heated with NH ₃ gives a compound commonly known as inorganic benzene. The gas is			
	(a) B_2O_3	(b) B_2H_6	(c) $B_3N_3H_6$	(d) <i>BF</i> ₃
41.	The oxide of potassium that	at does not exist is		
	(a) K_2O	(b) <i>KO</i> ₂	(c) K_2O_2	(d) K_2O_3
12	The metal that products H	with both dil HCl and	NaOH (aa) is	
72.	_		, ,	(d) E.
	(a) Zn	(b) <i>Mg</i>	(c) Ca	(d) Fe
43.	Which of the following is NOT a pair of functional isomers?			
	(a) $C_2H_5OC_2H_5$ and C_3	_	(b) CH_3CH_2OH and CH_3CH_2OH	H_3OCH_3
	(c) $CH_3CH_2NO_2$ and H_2NCH_2COOH		(d) CH ₃ COOH and HCOOCH ₃	

44. Identify 'X' in the following reaction

$$(a) \qquad (b) \qquad (c) \qquad (c)$$

- 45. Which of the following is NOT a greenhouse gas?
 - (a) CFC
- (b) CO₂
- (c) O_2
- (d) NO_2
- 46. A metal exists as an oxide with formula $M_{0.96}O$. Metal M can exist as M^{+2} and M^{+3} in its oxide $M_{0.96}O$. The percentage of M^{+3} in the oxide is nearly
 - (a) 8.3%
- (b) 4.6%
- (c) 5%
- (d) 9.6%
- 47. A metal crystallises in face centred cubic structure with metallic radius $\sqrt{2}$ Å. The volume of the unit cell (in m^3) is
 - (a) 4×10^{-10}
- (b) 6.4×10^{-29}
- (c) 4×10^{-9}
- (d) 6.4×10^{-30}

- 48. Silicon doped with gallium forms
 - (a) n type semiconductor

- (b) both n and p type semiconductor
- (c) an intrinsic semiconductor
- (d) p type semiconductor
- 49. The pair of electrolytes that possess same value for the constant (A) in the Debye Huckel Onsagar equation, $\lambda_m = \lambda_m^\circ A\sqrt{C}$ is
 - (a) $MgSO_4$, $NaSO_4$
- (b) $NH_{\Delta}Cl$, NaBr
- (c) NaBr, $MgSO_4$
- (d) NaCl, CaCl2

- 50. Which of the following pair of solutions is isotonic?
 - (a) 0.01M BaCl₂ and 0.015M NaCl
- (b) 0.001M $Al_2(SO_4)_3$ and 0.01M $BaCl_2$
- (c) 0.001M $CaCl_2$ and 0.001M $Al_2(SO_4)_3$
- (d) 0.01M BaCl₂ and 0.001M CaCl₂
- 51. Solute 'X' dimerises in water to the extent of 80% . 2.5g of 'X' in 100g of water increases the boiling point by 0.3°C. The molar mass of 'X' is $\left\lceil K_b = 0.52 \, \mathrm{Kkg \, mol}^{-1} \right\rceil$
 - (a) 13
- (b) 52
- (c) 65
- (d) 26

52.	Given $E_{Fe^{+3}/Fe^{+2}}^{\circ} = +0.76$	ven $E_{Fe^{+3}/Fe^{+2}}^{\circ}$ = +0.76V and E_{I_2/I^-}° = +0.55V. The equilibrium constant for the reaction taking			
	place in galvanic cell consisting of above two electrodes is $\left[\frac{2.303RT}{F} = 0.06\right]$				
	(a) 1×10^7	(b) 1×10 ⁹	(c) 3×10^8	(d) 5×10^{12}	
53.	If an aqueous solution of	f NaF is electrolyzed be	tween inert electrodes, the	he product obtained at	
	anode is				
	(a) F_2	(b) <i>H</i> ₂	(c) Na	(d) O_2	
54.	In which of the following cases a chemical reaction is possible?				
	(a) $ZnSO_{4(aq)}$ is placed in a copper vessel				
	(b) $AgNO_3$ solution is stirred with a copper spoon				
	(c) Conc. HNO ₃ is stored in a platinum vessel				
	(d) gold ornaments are washed with dil HCl				
55.	The time required for 60% completion of a first order reaction is 50min. The time required for			e time required for	
	93.6% completion of the	same reaction will be			
	(a) 100 min	(b) 83.8 min	(c) 50 min	(d) 150 min	
56.	For an elementary reaction	on $2A + 3B \longrightarrow 4C + D$ the	erate of appearance of C	at time 't' is	
	$2.8 \times 10^{-3} \mathrm{mol}\mathrm{L}^{-1}\mathrm{S}^{-1}$. Rate of disappearance of B at 't' t will be				
	(a) $\frac{4}{3} \left(2.8 \times 10^{-3} \right) \text{mol L}^{-1}$	$^{1}S^{-1}$	(b) $\frac{3}{4} (2.8 \times 10^{-3}) \text{mol} \text{L}^{-1} \text{S}^{-1}$		
	(c) $2(2.8 \times 10^{-3}) \text{mol L}^{-1}$	$^{-1}$ S ⁻¹	(d) $\frac{1}{4} \left(2.8 \times 10^{-3} \right) \text{mol L}^{-1}$	$^{1}S^{-1}$	
57.	The rate constant of a re	eaction is given by $k = P$	Ze ^{–Ea/RT} un <mark>der standar</mark>	d notation. In order to	
	speed up the reaction, which of the following factors has to be decreased?				
	(a) Z	(b) Both Z and T	(c) E_a	(d) T	
58.	A sol of AgI is prepared	l by mixing equal volum	tes of $0.1M$ $AgNO_3$ and	0.2M KI, which of the	
	following statement is correct?				
	(a) Sol obtained is a negative sol with NO_3^- adsorbed on AgI				
	(b) Sol obtained is a positive sol with Ag^+ adsorbed on AgI				
	(c) Sol obtained is a positive sol with K^+ adsorbed on AgI				
	(d) Sol obtained is a negative sol with I^- adsorbed on AgI				

CODE: C-1

59. During Adsorption of a gas on a solid

- (a) $\Delta G < 0$, $\Delta H < 0$, $\Delta S < 0$
- (c) $\Delta G < 0$, $\Delta H < 0$, $\Delta S < 0$

- (b) $\Delta G > 0$, $\Delta H > 0$, $\Delta S > 0$
- (d) $\Delta G < 0, \Delta H > 0, \Delta S > 0$

