

1.	The vitamin that helps in	clotting of blood is						
	(a) A	(b) B ₂	(c) C	(d) K				
	Ans: (d)							
	Sol: Vitamin K helps in cl	otting of blood						
2.	The polymer containing f	ive methylene groups in :	its repeating unit is					
	(a) Nylon 6, 6	(b) Dacron	(c) Nylon 6	(d) Bakelite				
	Ans: (c)							
	Sol: The polymer contain	ing fine methylene group	s in its repeating unit is n	ylon 6.				
3.	Cis-1, 4-polyisoprene is c	alled						
	(a) Buna-N	(b) Buna-S	(c) Neoprene	(d) Natural rubber				
	Ans: (d)							
	Sol: Cis – 1, 4 – polyisoprene is called Natural rubber							
4.	Which cleansing agent ge	ts precipita <mark>ted</mark> in hard wa	ater?					
	(a) Sodium lauryl sulphate (b) Cetyl trimethyl ammonium bromide							
	(c) Sodium stearate		(d) Sodium dodecyl benzene sulphonate					
	Ans: (c)							
	Sol: Sodim stearate being	soap, gets precipitated in	hard water					
5.	Anti-histamine among th	e following is						
	(a) Bromophenerami	ne (b) Amoxycillin	(c) Morphine	(d) Chloroxylenol				
	Ans: (a)							
	Sol: Antihistamine - Bron	nopheneramine						
6.	The elements in which ele	ectrons are progressively	fille <mark>d in 4f or</mark> bital are call	ed				
	(a) Actinoids	(b) Lanthanoids	(c) Transition elements	(d) Halogens				
	Ans: (b)			a 14.1				
	Sol: In lanthanoids, the di	fferenciating electron are	progressively filled in 4	f orbital.				
_								
7.	Incorrect statement with	reference to $Ce(Z = 58)$						
	(a) Ce^{4+} is a reducing	agent						
	(b) Atomic size of Ce	is more than that of <i>Lu</i>						
	(c) Ce in +3 oxidation	n state is more						
	(d) Ce shows commo	n oxidation states of $+3$ a	and +4					
	Ans: (a)							
	Sol: Ce^{4+} is a good oxidis	sing agent and undergoes	reduction easily as Ce^{3+}	is more stable than				
	Ce^{4+} .							

8. A mixture of *NaCl* and $K_2Cr_2O_7$ is heated with conc. H_2SO_4 , deep red vapours are formed. Which of the following statement is false?

(a) The vapours give a yellow solution with *NaOH*

(b) The vapours contain CrO_2Cl_2 and Cl_2

- (c) The vapours contain CrO_2Cl_2 only
- (d) The vapours when passed into lead acetate in acetic acid gives a yellow precipitate

Ans: (b)

Sol: The yellow vapour coming out of test tube contains only CrO₂Cl₂

- 9. Which of the following statement is wrong?
 - (a) In highest oxidation states, the transition metals show acidic character
 - (b) Metals in highest oxidation states are more stable in oxides than in fluorides
 - (c) Mn^{3+} and Co^{3+} are oxidizing agents in aqueous solution
 - (d) All elements of 3d series exhibit variable oxidation states

Ans: (d)

Sol: *Zn* and *Sc* do not show variable oxidation state in 3–d series.

10. Which among the following is the strongest ligand?

(a) <i>CN</i> ⁻	(b) <i>CO</i>	(c) <i>NH</i> ₃	(d) <i>en</i>

Ans: (b)

Sol: *CO* is the strongest ligand

- 11. Relative lowering of vapour pressure of dilute solution of glucose dissolved in 1 kg of water is 0.002. The molality of the solution is
 - (a) 0.004 (b) 0.111 (c) 0.222 (d) 0.021 Ans: (b)

Sol: RLVP =
$$x_2 = \frac{n_1}{n_1 + n_2}$$
 for dilute solution, $n_1 + n_2 \approx n_2$

RLVP =
$$\frac{n_1}{n_2}$$

0.002 = $\frac{n_1}{1000}$ $n_1 = 0.111$

One litre solution of *MgCl*₂ is electrolyzed completely by passing a current of 1*A* for 16 min 5 sec. The original concentration of *MgCl*₂ solution was

(Atomic mass of Mg = 24)

18

(a)
$$5 \times 10^{-3} M$$
 (b) $0.5 \times 10^{-3} M$ (c) $5 \times 10^{-2} M$ (d) $1.0 \times 10^{-2} M$

Sol: $Mg^{2+} + 2e^{-1} \longrightarrow Mg$

2*F* 1 mole 2×96500 1 mole

$$\therefore$$
 965C \longrightarrow

$$\frac{965}{2 \times 96500} = \frac{1}{2 \times 100}$$
$$= 0.005$$
$$= 5 \times 10^{-3} \,\mathrm{M}$$

13. An aqueous solution of $CuSO_4$ is subjected to electrolysis using inert electrodes. The pH of the

solution will

- (a) increase
- (b) decrease
- (c) remains unchanged
- (d) increase or decrease depending on the strength of the current

Ans: (b)

Sol: The products of electrolysis of aq solution of $CuSO_4$ using inert electrode.

Anode : O_2 gas Cathode : Cu

Left over solution - H_2SO_4 solution

∴ pH of the solution decreases

14. Give:
$$E_{Mn^{+4}|Mn^{+2}}^{o} = 1.2V$$
, then $E_{Mn^{+7}|Mn^{+4}}^{o}$ is
(a) 0.3 V (b) 1.7 V (c) 0.1 V (d) 2.1 V

Ans: (b)

Sol:
$$Mn^{+7} \xrightarrow{3e^-}{L_2E_2} Mn^{+4} \xrightarrow{(1.2V)2e^{-1}}{L_1E_1} Mn^{2+}$$

 $L_3E_2 \quad (1.5 \text{ v}) \quad 5e^{-1}$
 $L_3E_3 = L_1E_1 + L_2E_2$
 $1.5 \times 5 = 1.2 \times 2 + E_2 \times 3$
 $7.5 - 2.4 = 3E_2$
 $E_2 = \frac{7.5 - 2.4}{3} = \frac{5.1}{3} = 1.7V$

 $\lambda_B = 1 \times 10^{-7} m$

15. The plot of $t_{1/2}$ v/s $[R]_0$ for a reaction is a straight-line parallel to x-axis. The unit for the rate constant of this reaction is (b) $L \mod -1s^{-1}$ (c) $\mod L^{-1}s^{-1}$ (a) mol $L^{-1}s$ (d) s^{-1} Ans: (d) Sol: $t_{\frac{1}{2}}$ is independent of initial concentration for first order reaction. Which has unit of rate constant as S^{-1} 16. The mass of AgCl precipitated when a solution containing 11.70 g of NaCl is added to a solution containing 3.4 g of AgNO₃ is (Atomic mass of Ag = 108, Atomic mass of Na = 23) (a) 5.74 g (b) 2.87 g (c) 1.17 g (d) 6.8 g Ans: (b) Sol: $AgNO_3 + NaCl \longrightarrow AgCl + NaNO_3$ 3.4 11.7 58.5 170 = 0.02 mol 0.2 mol 0.02 mol(LR) \therefore The mass of $AgCl = 0.02 \times 143.5$ = 2.87 g17. Two particles A and B are in motion. If the wavelength associated with 'A' is 33.33 nm, the wavelength associated with 'B' whose momentum is $\frac{1}{3}$ rd of 'A' is (b) $1.25 \times 10^{-7} m$ (c) $2.5 \times 10^{-8} m$ (a) $1.0 \times 10^{-8} m$ (d) $1.0 \times 10^{-7} m$ Ans: (d) Sol: $\lambda_A = \frac{h}{P_A}$ $\therefore P_A = \frac{h}{\lambda_A}$ given $P_B = \frac{1}{3}P_A$ $\lambda_B = \frac{h}{P_B} = \frac{h}{\frac{1}{3}P_A} = \frac{3h}{\frac{h}{\lambda_A}} = 3\lambda_A$ $\therefore \ \lambda_B = 3 \times 33.33 = 99.99 \, nm$ $\approx 100 \ nm = 100 \times 10^{-9} m$

18. The first ionization enthalpy of the following elements are in the order:

(a) C < N < Si < P(b) P < Si < C < N(c) P < Si < N < C(d) Si < P < C < NAns: (d) Sol: 14th group 15 group С Ν Si Р Ionization enthalpy of N > Ionization enthalpy of C Ionization enthalpy decreases down the group \therefore Si < P < C < N 19. Solubility of *AgCl* is least in (a) 0.1*M* NaCl (b) 0.1*M BaCl*₂ (c) Pure water (d) $0.1M AlCl_3$

Ans: (d)

Sol: Solubility of sparingly soluble salt decreases with the addition salt with common ion. Higher the concentration of the common ion, lower is the solubility.

(d) $\frac{d(\ln V)}{dT}$

20. Which of the following equations does NOT represent Charles's law for a given mass of gas at constant pressure?

(a)
$$\frac{V}{T} = K$$
 (b) $\log K = \log V + \log T$

(c)
$$\log V = \log K + \log T$$

Ans: (b)

Sol: For Charles' Law

 $V\alpha T$ at constant pressure

$$V = KT$$
 or $\frac{V}{T} = K$; $\log V = \log K + LogT$

Differentiating above equation we get, $\frac{d(\ln V)}{dT} = \frac{1}{T}$

 \therefore option (B) does not represent Charles' law

21. Which is the most suitable reagent for the following conversion?

$$CH_{3}-CH = CH-CH_{2} - C - CH_{3} \longrightarrow CH_{3}-CH = CH-CH_{2} - C - OH$$
(a) Tollen's reagent
(b) Benzoyl peroxide
(c) *I*₂ and *NaOH* solution
(d) *Sn* and *NaOH* solution

Ans: (c)

Sol: Iodoform reaction as the given compound contains methyl ketone.

22. Which of the following is least soluble in water at 298 K?

(a) CH_3NH_2 (b) $(CH_3)_2NH$ (c) $(CH_3)_3N$ (d) $C_6H_5NH_2$ Ans: (c)

Sol: Tertiary amine is least soluble as it cannot form hydrogen bonds.

- 23. If Aniline is treated with 1:1 mixture of $con.HNO_3$ and $con.H_2SO_4$, p-nitroaniline and
 - m-nitroaniline are formed nearly in equal amounts. This is due to
 - (a) m-directing property of $-NH_2$ group
 - (b) m & p directing property of $-NH_2$ group
 - (c) protonation of $-NH_2$ which causes deactivation of benzene ring
 - (d) isomerization of some p nitroaniline into m nitroaniline

Ans: (c)

Sol: Aniline with nitrating mixture given meta derivative also due to protonation of $-NH_2$ which causes deactivation of benzene ring.

24. In nucleic acids, the nucleotides are joined together by

(a) Phosphoester linkage	(b) Phosphodisulphide linkage

(c) Phosphodiester linkage (d) Sulphodiester linkage

Ans: (c)

Sol: Nucleotides are joined together by phosphodiester linkage in nucleic acids.

```
25. Which of the following is generally water insoluble?
                                                             (c) Vitamin-C
        (a) Fibrous protein
                                   (b) Amylose
                                                                                       (d) Glycine
    Ans: (a)
    Sol: Fibrous proteins are water insoluble
26. Which of the following possess net dipole moment?
        (a) SO<sub>2</sub>
                                   (b) BeCl_2
                                                             (c) BF_3
                                                                                       (d) CO_2
                 Sol: SO<sub>2</sub> shows net dipole moment of 1.61 D
    Ans: (a)
27. The number of \pi – bonds and \sigma – bonds present in naphthalene are respectively
        (a) 6,19
                                   (b) 5,11
                                                             (c) 5,19
                                                                                       (d) 5, 20
```

Ans: (c)

Sol: The structure of naphthalene

28. The reaction in which $\Delta H > \Delta U$ is

(a)
$$N_{2(g)} + O_{2(g)} \longrightarrow 2NO_{(g)}$$

(b) $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$
(c) $CaCO_{3(g)} \longrightarrow CaO_{(g)} + CO_{2(g)}$
(d) $CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(I)}$
Ans: (c)
Sol: $\Delta H = \Delta U + RT\Delta n_g$
 $\Delta H > \Delta U$ for $\Delta n_g > 0$
For $CaCO_3(S) \longrightarrow CaO(S) + CO_2(g)$
 $\Delta n_g = 1$ $\therefore \Delta H > \Delta U$
29. The number of moles of electron required to reduce 0.2 mole of $Cr_2O_7^{-2}$ to Cr^{+3}
(a) 1.2 (b) 12 (c) 6 (d) 0.6
Ans: (a)
Sol:
 $\frac{r^6}{Cr_2}O_7^{-2} \longrightarrow \frac{r^3}{2}Cr^{3+}$
Total change in $O.N = 6$
 \therefore For reduction 1 mole of $Cr_2O_7^{-7}$, 6 moles of electrons are required.
 \therefore For 0.2 mole $\longrightarrow 0.2 \times 6$
 $= 1.2$ mole of electron
30. In the reaction $B(OH)_3 + 2H_2O \longrightarrow [B(OH)_4]^{-1} + H_3\dot{O}$, $B(OH)_3$ functions as
(a) Protonic acid (b) Bronsted acid
(c) Lewis base (d) Lewis acid
Ans: (d)
Sol: Boric acid $B(OH)_3$ is a lewis acid

	Acid		рКа
(A)	Phenol	i.	16
(B)	<i>p</i> – Nitrophenol	ii.	0.78
(C)	Ethanol	iii.	10
(D)	Picric acid	iv.	7.1

31. Match the following acids with their pKa values

а	b	С	d
(a) iii	iv	i	ii
(b) iii	i	iv	ii
(c) ii	i	iii	iv
(d) iv	ii	iii	i

Ans: (a)

Sol: presence of electron with drawing group increases the acidic nature of phenol. Hence the order of acidic strength of phenol is given by

Picric acid > p – nitrophenol > phenol > ethanol

	рКа	(0.78)	(7.1)	(10)	(16)
--	-----	--------	-------	------	------

32. Which of the following can be used to test the acidic nature of ethanol?

(a) Blue litmus solution	(b) NaHCO ₃
(c) Na_2CO_3	(d) <i>Na</i> metal

Ans: (d)

Sol: Ethanol being a very weak acid does not give litmus test, $NaHCO_3$ test and Na_2CO_3 . It only reacts with sodium metal to liberate hydrogen gas

34.	Propanoic acid undergoe	s HVZ reaction to give	chloropropanoic acid.	The product obtained is					
	(a) stronger acid thar	n propanoic acid	(b) weaker acid th	nan propanoic acid					
	(c) as stronger as pro	panoic acid	(d) stronger than	(d) stronger than dichloropropanoic acid					
	Ans: (a)								
	Sol: CH ₃ CH ₂ COOH	Cl₂/RedP → CH₃CHC	ООН						
	Propanoic acid	Cl	opanoic acid						
	Chloropropanoic acid is	stronger than propanoi	c acid due to $-I$ effect						
		and the second sec							
35.	$P \xrightarrow{H_2/Pd-BaSO_4} Q$								
	$\xrightarrow{(i)con.NaOH} R + S$								
	<i>R</i> and <i>S</i> form benzyl benzoate when treated with each other. Hence <i>P</i> is								
	(a) C_6H_5CHO	(b) C ₆ H ₅ COCl	(c) $C_6H_5CH_2OH$	(d) C_6H_5COOH					
	Ans: (b)								
	Sol: C_6H_5COCl <u>$H_2/Pd-1$</u>	$\xrightarrow{BaSO4} C_6H_5CHO \xrightarrow{Con} dil$	$ \begin{array}{ccc} \stackrel{NaOH}{\longrightarrow} & C_6H_5COOI \\ \hline & & & \downarrow \text{esteri} \end{array} $	$H + C_6 H_5 C H_2 O H$					
			C ₆ H ₅ COOCH ₂ C benzyl benzo	G_6H_5 ate					
36.	Which of the following is	a network crystalline s	solid?						
	(a) <i>I</i> ₂	(b) NaCl	(c) AlN	(d) Ice					
	Ans: (c)								
	Sol: AlN (aluminium nit	tride) is a networking so	olid						
37.	The number of atoms in	2.4 g of body centred c	ubic crystal with edge	length 200 pm is (density					
	$=10 \ g \ cm^{-3}, N_A = 6 \times 10^{23}$	atoms/mol)							
	(a) 6×10^{22}	(b) 6×10 ²³	(c) 6×10 ²⁰	(d) 6×10^{19}					
	Ans: (a)								
	Sol: $d = \frac{ZM}{a^3 N \ 10^{-30}}$								
	$10 = \frac{2 \times 2.4}{\left(200\right)^3 N \ 10^{-30}}$								
	$N = \frac{2 \times 2.4}{8 \times 10^{-24} \times 10} = 6 \times 10^{-24} \times 10$	<10 ²²							

38. 1 mole of NaCl is doped with 10^{-5} mole of $SrCl_2$. The number of cationic vacancies in the crystal lattice will be

(a)
$$6.022 \times 10^{18}$$
 (b) 6.022×10^{23} (c) 6.022×10^{15} (d) 12.044×10^{20}

Ans: (a)

Sol: For each of Sr^{2+} introduced, 2 cation vacancy created

- \therefore 1 mole of *NaCl* is doped with 10⁻⁵ moles of *SrCl*₂
 - $\therefore \text{ concentration of cation vacancy } = 10^{-5} \times 6.022 \times 10^{23}$ $= 6.022 \times 10^{18}$
- 39. A non-volatile solute, 'A' tetramerises in water to the extent of 80%. 2.5 g of 'A' in 100 g of

water, lowers the freezing point by $0.3^{\circ}C$. The molar mass of A in gram mol⁻¹ is (K_f for water

= 1.86 K kg mol⁻¹)
(a) 62 (b) 155 (c) 221 (d) 354
Ans: (a)
Sol:
$$\alpha_{ass} = \frac{i-1}{\frac{1}{2}/n-1}$$

 $0.8 = \frac{i-1}{\frac{1}{2}/4-1}$
 $i = 1-0.6 = 0.4$
 $\therefore \Delta T_f = \frac{iK_f W_2 1000}{W_1 \times M_2}$
 $0.3 = \frac{0.4 \times 1.86 \times 2.5 \times 1000}{100 \times M_2}$
 $M_2 = 62 \text{ g/mol}$

40. Solution '*A*' contains acetone dissolved in chloroform and solution '*B*' contains acetone dissolved in carbon disulphide. The type of deviations from Raoult's law shown by solutions *A* and *B*, respectively are

(a) positive and positive
(b) negative and negative
(c) positive and negative
(d) negative and positive

Ans: (d)

Sol: Solution A	Solution B
Acetone	acetone
+	+
Chloroform	CS_2
Negative	Positive
Deviation	deviation

41. Among the following, the main reactions occurring in blast furnace during extraction of iron from haematite are

i.
$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$$
 ii. $FeO + SiO_2 \longrightarrow FeSiO_3$
iii. $Fe_2O_3 + 3C \longrightarrow 2Fe + 3CO$
iv. $CaO + SiO_2 \longrightarrow CaSiO_3$

(a) i and ii (b) ii and iii (c) iii and iv (d) i and iv

- Ans: (d)
- Sol: Reaction at reduction zone $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

Slag zone
$$CaO + SiO_2 \rightarrow CaSiO_3$$

42. Which of the following pair contains 2 lone pair of electrons on the central atom?

(a)
$$I_3^+, H_2O$$
 (b) XeF_4, NH_3 (c) H_2O, NF_3 (d) SO_4^{2-}, H_2S

Ans: (a)

Sol: I_3^+ and H_2O has two lone pairs surrounding the central metal ion.

- 43. Which of the following statement is correct?
 - (a) Cl_2 oxidises H_2O to O_2 but F_2 does not
 - (b) F_2 oxidises H_2O to O_2 but Cl_2 does not
 - (c) Cl_2 is a stronger oxidising agent than F_2
 - (d) Fluoride is a good oxidising agent

Ans: (b)

- Sol: F_2 oxidises H_2O to O_2 but not Cl_2
- 44. 0.1 mole of XeF_6 is treated with 1.8 g of water. The product obtained is

(a)
$$XeO_3$$
 (b) $XeOF_4$ (c) XeO_2F_2 (d) $Xe + XeO_3$

Ans: (b)

Sol:
$$XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$$

0.1 mole $\frac{1.8}{18} = 0.1$ mole

Copyright © Ace Creative Learning Pvt Ltd., www.deekshalearning.com

45. In the reaction of gold with aquaregia, oxidation state of Nitrogen changes from

(a) +4 to +2 (b) +5 to +2 (c) +6 to +4 (d) +3 to +1

Ans: (b)

Sol: Aqua regia - mixture of (1:3) con. HNO₃ and con. HCl

$$Au + HNO_3 + 4HCl = [AuCl_4]^- + NO^+ + H_3O^+ + H_2O$$

46. Addition of excess of $AgNO_3$ to an aqueous solution of 1 mole of $PdCl_2 \cdot 4NH_3$ gives 2 moles of AgCl. The conductivity of this solution corresponds to

(a) 1:1 electrolyte (b) 1:2 electrolyte (c) 1:3 electrolyte (d) 1:4 electrolyte

Ans: (b)

Sol: The formula of the complex is

$$\left\lceil Pd(NH_3)_4 \right\rceil Cl_2 \rightarrow 1:2$$
 electrolyte

47. The formula of pentaaquanitratochromium(III) nitrate is,

(a)
$$[Cr(H_2O)_6](NO_3)_3$$

(b) $[Cr(H_2O)_5(NO_3)](NO_3)_2$
(c) $[Cr(H_2O)_6](NO_2)_2$
(d) $[Cr(H_2O)_5(NO_2)]NO_3$

Ans: (b)

Sol:
$$\left[Cr(H_2O)_5(NO_3) \right] (NO_3)_2$$

48. Which of the following halide undergoes hydrolysis on warming with water/aqueous *NaOH*?

Ans: (d)

Sol: Presence of electron with drawing group like NO_2 at ortho or para position increases the reactivity of chlorobenzene.

Ans: (d)

Sol: Catalyst decreases the activation energy of the reaction.

52. 1 L of 2 M CH_3COOH is mixed with 1 L of 3M C_2H_5OH to form an ester. The rate of the reaction with respect to the initial rate when each solution is diluted with an equal volume of water will be

(a) 0.25 times (b) 0.5 times (c) 2 times (d) 4 times

Ans: (a)

Sol: Rate = $K[CH_2COOH][C_2H_5OH]$

$$r_1 = K \quad \frac{2}{2} \times \frac{3}{2} \quad \therefore \quad \frac{r_2}{r_1} = \frac{6}{16} \times \frac{4}{6}$$

 $r_2 = K \quad \frac{2}{4} \times \frac{3}{4} \qquad \qquad = \frac{4}{16} = \frac{1}{4} \text{ times}$

53. Which of the following is an example of homogeneous catalysis?

(a) oxidation of NH_3 in Ostwald's process

(b) oxidation of SO_2 in lead chamber process

(c) oxidation of SO_2 in contact process

(d) manufacture of NH_3 by Haber's process

Ans: (b)

Sol: Reaction in lead chamber process

 $2SO_2(g) + O_2(g) \xrightarrow{NO(g)} 2SO_3(g)$

Example for homogeneous catalysis

54. Critical Micelle concentration for a soap solution is 1.5×10^{-4} mol L⁻¹. Micelle formation is

possible only when the concentration of soap solution in mol L^{-1} is

(a) 2.0×10^{-3} (b) 7.5×10^{-5} (c) 4.6×10^{-5} (d) 1.1×10^{-4}

Ans: (a)

Sol: Micelle formation is possible only above critical micelle concentration.

55.	Oxidation state of copper	is +1 in						
	(a) Malachite	(b) Azurite	(c) Cuprite	(d) Chalcopyrite				
	Ans: (c or d)							
	Sol: Composition of Chalcopyrite $(CuFeS_2)$							
	Mal	achite $(CuCO_3.Cu(OH)_2)$						
	Azu	rite $(2CuCo_3.Cu(OH)_2)$						
	Cu	prite (Cu_2O)						

56. The metal nitrate that liberates NO_2 on heating

(a) $NaNO_3$ (b) KNO_3 (c) $LiNO_3$ (d) $RbNO_3$ Ans: (c)

Sol: LiNO₃ like alkaline earth metal decomposes to give NO₂

 $4LiNO_3 \rightarrow 2Li_2O + 4NO_2 + O_2$

- 57. Which of the following is NOT true regarding the usage of hydrogen as a fuel?
 - (a) High calorific value
 - (b) Combustion product is ecofriendly
 - (c) The combustible energy of hydrogen can be directly converted to electrical energy in a fuel cell
 - (d) Hydrogen gas can be easily liquefied and stored

Ans: (d)

- Sol: Hydrogen gas storage is very difficult because it is highly inflammable
- 58. Resonance effect is not observed in

(a) $CH_2 = CH - CH = CH_2$	(b) $CH_2 = CH - Cl$
(c) $CH_2 = CH - C \equiv N$	(d) $CH_2 = CH - CH_2 - NH_2$

Ans: (d)

Sol: Resonance effect is possible only in conjugate systems.

59. 2-butyne is reduced to trans-but-2-ene using

(a) $H_2|Ni$ (b) $H_2|Pd-C$ (c) Na in liq. NH_3 (d) Zn in dil. HClAns: (c) Sol: 2 butyne $\xrightarrow{Na/lqNH_3}$ trans - but - 2 - ene 60. Eutrophication causes (a) increase of nutrients in water (c) reduction in water pollution Ans: (b)

Sol: Eutrophication increases nutrients in water.

Key Answers:

1. d	2. c	3. d	4. c	5. a	6. b	7. a	8. b	9. d	10. b
11. b	12. a	13. b	14. b	15. d	16. b	17. d	18. d	19. d	20. b
21. c	22. c	23. c	24. c	25. a	26. a	27. с	28. c	29. a	30. d
31. a	32. d	33. b	34. a	35. b	36. c	37. a	38. a	39. a	40. d
41. d	42. a	43. b	44. b	45. b	46. b	47. b	48. d	49. c	50. b
51. d	52. a	53. b	54. a	55. cd	56. c	57. d	58. d	59. c	60. b
	ТМ								