1. The vitamin that helps in clotting of blood is
(a) A
(b) B_{2}
(c) C
(d) K

Ans: (d)
Sol: Vitamin K helps in clotting of blood
2. The polymer containing five methylene groups in its repeating unit is
(a) Nylon 6, 6
(b) Dacron
(c) Nylon 6
(d) Bakelite

Ans: (c)
Sol: The polymer containing fine methylene groups in its repeating unit is nylon 6.
3. Cis-1,4-polyisoprene is called
(a) Buna-N
(b) Buna-S
(c) Neoprene
(d) Natural rubber

Ans: (d)
Sol: Cis - 1, 4-polyisoprene is called Natural rubber
4. Which cleansing agent gets precipitated in hard water?
(a) Sodium lauryl sulphate
(b) Cetyl trimethyl ammonium bromide
(c) Sodium stearate
(d) Sodium dodecyl benzene sulphonate

Ans: (c)
Sol: Sodim stearate being soap, gets precipitated in hard water
5. Anti-histamine among the following is
(a) Bromopheneramine
(b) Amoxycillin
(c) Morphine
(d) Chloroxylenol

Ans: (a)
Sol: Antihistamine - Bromopheneramine
6. The elements in which electrons are progressively filled in $4 f$ orbital are called
(a) Actinoids
(b) Lanthanoids
(c) Transition elements
(d) Halogens

Ans: (b)
Sol: In lanthanoids, the differenciating electron are progressively filled in $4 f$ orbital.
7. Incorrect statement with reference to $C e(Z=58)$
(a) $\mathrm{Ce} e^{4+}$ is a reducing agent
(b) Atomic size of Ce is more than that of Lu
(c) $C e$ in +3 oxidation state is more
(d) $C e$ shows common oxidation states of +3 and +4

Ans: (a)
Sol: $\mathrm{Ce} e^{4+}$ is a good oxidising agent and undergoes reduction easily as $C e^{3+}$ is more stable than $C e^{4+}$.
8. A mixture of NaCl and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is heated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, deep red vapours are formed.

Which of the following statement is false?
(a) The vapours give a yellow solution with NaOH
(b) The vapours contain $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and Cl_{2}
(c) The vapours contain $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ only
(d) The vapours when passed into lead acetate in acetic acid gives a yellow precipitate

Ans: (b)
Sol: The yellow vapour coming out of test tube contains only $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
9. Which of the following statement is wrong?
(a) In highest oxidation states, the transition metals show acidic character
(b) Metals in highest oxidation states are more stable in oxides than in fluorides
(c) Mn^{3+} and Co^{3+} are oxidizing agents in aqueous solution
(d) All elements of $3 d$ series exhibit variable oxidation states

Ans: (d)
Sol: $Z n$ and $S c$ do not show variable oxidation state in $3-\mathrm{d}$ series.
10. Which among the following is the strongest ligand?
(a) CN^{-}
(b) CO
(c) NH_{3}
(d) $e n$

Ans: (b)
Sol: $C O$ is the strongest ligand
11. Relative lowering of vapour pressure of dilute solution of glucose dissolved in 1 kg of water is 0.002 . The molality of the solution is
(a) 0.004
(b) 0.111
(c) 0.222
(d) 0.021

Ans: (b)
Sol: RLVP $=x_{2}=\frac{n_{1}}{n_{1}+n_{2}}$ for dilute solution, $n_{1}+n_{2} \approx n_{2}$

$$
\begin{aligned}
& \text { RLVP }=\frac{n_{1}}{n_{2}} \\
& 0.002=\frac{n_{1}}{\frac{1000}{18}}
\end{aligned}
$$

12. One litre solution of MgCl_{2} is electrolyzed completely by passing a current of 1 A for 16 min 5 sec. The original concentration of MgCl_{2} solution was
(Atomic mass of $M g=24$)
(a) $5 \times 10^{-3} \mathrm{M}$
(b) $0.5 \times 10^{-3} \mathrm{M}$
(c) $5 \times 10^{-2} \mathrm{M}$
(d) $1.0 \times 10^{-2} \mathrm{M}$

Ans: (a)
Sol: $\mathrm{Mg}^{2+}+2 e^{-1} \longrightarrow M g$

$2 F$	1 mole
2×96500	1 mole

$\therefore 965 C \longrightarrow$

$$
\begin{aligned}
\frac{965}{2 \times 96500} & =\frac{1}{2 \times 100} \\
& =0.005 \\
& =5 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

13. An aqueous solution of CuSO_{4} is subjected to electrolysis using inert electrodes. The pH of the solution will
(a) increase
(b) decrease
(c) remains unchanged
(d) increase or decrease depending on the strength of the current

Ans: (b)
Sol: The products of electrolysis of aq solution of CuSO_{4} using inert electrode.
Anode: O_{2} gas Cathode: Cu
Left over solution - $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution
$\therefore \mathrm{pH}$ of the solution decreases
14. Give : $E_{M n^{+4} \mid M n^{+2}}^{o}=1.2 V$, then $E_{M n^{+7} \mid M n^{+4}}^{o}$ is
(a) 0.3 V
(b) 1.7 V
(c) 0.1 V
(d) 2.1 V

Ans: (b)
Sol: $\mathrm{Mn}^{+7} \xrightarrow[L_{2} E_{2}]{3 e^{-}} M n^{+4} \xrightarrow[L_{1} E_{1}]{(1.2 \mathrm{~V}) 2 e^{-1}} \mathrm{Mn}^{2+}$

$L_{3} E_{3}=L_{1} E_{1}+L_{2} E_{2}$
$1.5 \times 5=1.2 \times 2+E_{2} \times 3$
$7.5-2.4=3 E_{2}$
$E_{2}=\frac{7.5-2.4}{3}=\frac{5.1}{3}=1.7 \mathrm{~V}$
15. The plot of $t_{1 / 2} \mathrm{v} / \mathrm{s}[R]_{0}$ for a reaction is a straight-line parallel to x-axis. The unit for the rate constant of this reaction is
(a) $\mathrm{mol} L^{-1} s$
(b) $L \mathrm{~mol}-1 s^{-1}$
(c) $\mathrm{mol} L^{-1} s^{-1}$
(d) s^{-1}

Ans: (d)
Sol: $t_{1 / 2}$ is independent of initial concentration for first order reaction. Which has unit of rate constant as S^{-1}
16. The mass of AgCl precipitated when a solution containing 11.70 g of NaCl is added to a solution containing 3.4 g of AgNO_{3} is
(Atomic mass of $A g=108$, Atomic mass of $N a=23$)
(a) 5.74 g
(b) 2.87 g
(c) 1.17 g
(d) 6.8 g

Ans: (b)
Sol: $\mathrm{AgNO}_{3}+\mathrm{NaCl} \longrightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$

$$
\begin{align*}
& \frac{3.4}{170} \quad \frac{11.7}{58.5} \\
= & 0.02 \mathrm{~mol} \quad 0.2 \mathrm{~mol} \quad 0.02 \mathrm{~mol} \tag{LR}
\end{align*}
$$

\therefore The mass of $\mathrm{AgCl}=0.02 \times 143.5$

$$
=2.87 \mathrm{~g}
$$

17. Two particles A and B are in motion. If the wavelength associated with ' A ' is 33.33 nm , the wavelength associated with ' B ' whose momentum is $\frac{1}{3}{ }^{\text {rd }}$ of ' A ' is
(a) $1.0 \times 10^{-8} \mathrm{~m}$
(b) $1.25 \times 10^{-7} \mathrm{~m}$
(c) $2.5 \times 10^{-8} \mathrm{~m}$
(d) $1.0 \times 10^{-7} \mathrm{~m}$

Ans: (d)
Sol: $\lambda_{A}=\frac{h}{P_{A}} \quad \therefore P_{A}=\frac{h}{\lambda_{A}}$

$$
\text { given } P_{B}=\frac{1}{3} P_{A}
$$

$\lambda_{B}=\frac{h}{P_{B}}=\frac{h}{1 / 3 P_{A}}=\frac{3 h}{h / \lambda_{A}}=3 \lambda_{A}$
$\therefore \lambda_{B}=3 \times 33.33=99.99 \mathrm{~nm}$
$\approx 100 \mathrm{~nm} \quad=100 \times 10^{-9} \mathrm{~m}$
$\lambda_{B}=1 \times 10^{-7} \mathrm{~m}$
18. The first ionization enthalpy of the following elements are in the order:
(a) $C<N<S i<P$
(b) $P<S i<C<N$
(c) $P<S i<N<C$
(d) $\mathrm{Si}<P<C<N$

Ans: (d)
Sol: $14^{\text {th }}$ group 15 group
C $\quad \mathrm{N}$
Si $\quad P$
Ionization enthalpy of $N>$ Ionization enthalpy of C
Ionization enthalpy decreases down the group

$$
\therefore S i<P<C<N
$$

19. Solubility of AgCl is least in
(a) 0.1 M NaCl
(b) $0.1 \mathrm{M} \mathrm{BaCl}_{2}$
(c) Pure water
(d) $0.1 \mathrm{M} \mathrm{AlCl}_{3}$

Ans: (d)
Sol: Solubility of sparingly soluble salt decreases with the addition salt with common ion. Higher the concentration of the common ion, lower is the solubility.
20. Which of the following equations does NOT represent Charles's law for a given mass of gas at constant pressure?
(a) $\frac{V}{T}=K$
(b) $\log K=\log V+\log T$
(c) $\log V=\log K+\log T$
(d) $\frac{d(\ln V)}{d T}=\frac{1}{T}$

Ans: (b)
Sol: For Charles' Law
$V \alpha T$ at constant pressure
$V=K T$ or $\frac{V}{T}=K ; \quad \log V=\log K+\log T$
Differentiating above equation we get, $\frac{d(\ln V)}{d T}=\frac{1}{T}$
\therefore option (B) does not represent Charles' law
21. Which is the most suitable reagent for the following conversion?

(a) Tollen's reagent
(b) Benzoyl peroxide
(c) I_{2} and NaOH solution
(d) Sn and NaOH solution

Ans: (c)
Sol: Iodoform reaction as the given compound contains methyl ketone.
22. Which of the following is least soluble in water at 298 K ?
(a) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$

Ans: (c)
Sol: Tertiary amine is least soluble as it cannot form hydrogen bonds.
23. If Aniline is treated with $1: 1$ mixture of con. HNO_{3} and con. $\mathrm{H}_{2} \mathrm{SO}_{4}, p$ - nitroaniline and m-nitroaniline are formed nearly in equal amounts. This is due to
(a) m-directing property of $-\mathrm{NH}_{2}$ group
(b) $m \& p$ directing property of $-\mathrm{NH}_{2}$ group
(c) protonation of $-\mathrm{NH}_{2}$ which causes deactivation of benzene ring
(d) isomerization of some p - nitroaniline into m - nitroaniline

Ans: (c)
Sol: Aniline with nitrating mixture given meta derivative also due to protonation of $-\mathrm{NH}_{2}$ which causes deactivation of benzene ring.
24. In nucleic acids, the nucleotides are joined together by
(a) Phosphoester linkage
(b) Phosphodisulphide linkage
(c) Phosphodiester linkage
(d) Sulphodiester linkage

Ans: (c)
Sol: Nucleotides are joined together by phosphodiester linkage in nucleic acids.
25. Which of the following is generally water insoluble?
(a) Fibrous protein
(b) Amylose
(c) Vitamin- C
(d) Glycine

Ans: (a)
Sol: Fibrous proteins are water insoluble
26. Which of the following possess net dipole moment?
(a) SO_{2}
(b) BeCl_{2}
(c) $B F_{3}$
(d) CO_{2}

Ans: (a) Sol: SO_{2} shows net dipole moment of 1.61 D
27. The number of π-bonds and σ-bonds present in naphthalene are respectively
(a) 6,19
(b) 5,11
(c) 5,19
(d) 5,20

Ans: (c)
Sol: The structure of naphthalene

Π bonds - 5
$\left.\begin{array}{l}C-H \sigma \text { bonds }-8 \\ C-C \sigma \text { bonds }-11\end{array}\right\} 19 \sigma$ bonds
28. The reaction in which $\Delta H>\Delta U$ is
(a) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{(\mathrm{g})}$
(b) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
(c) $\mathrm{CaCO}_{3(\mathrm{~s})} \longrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
(d) $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Ans: (c)
Sol: $\quad \Delta H=\Delta U+R T \Delta n_{g}$
$\Delta H>\Delta U$ for $\Delta n_{g}>0$
For $\mathrm{CaCO}_{3}(\mathrm{~S}) \longrightarrow \mathrm{CaO}(\mathrm{S})+\mathrm{CO}_{2}(\mathrm{~g})$
$\Delta n_{g}=1 \quad \therefore \quad \Delta H>\Delta U$
29. The number of moles of electron required to reduce 0.2 mole of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ to Cr^{+3}
(a) 1.2
(b) 12
(c) 6
(d) 0.6

Ans: (a)
Sol:
$\stackrel{+6}{\mathrm{Cr}_{2}} \mathrm{O}_{7}^{2-} \longrightarrow \stackrel{+3}{\mathrm{C}} \mathrm{Cr}^{3+}$
Total change in $O \cdot N=6$
\therefore For reduction 1 mole of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, 6$ moles of electrons are required.
$\begin{aligned} \therefore \text { For } 0.2 \text { mole }-\cdots-------\quad & 0.2 \times 6 \\ = & 1.2 \text { mole of electron }\end{aligned}$
30. In the reaction $\mathrm{B}(\mathrm{OH})_{3}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}_{3} \stackrel{+}{\mathrm{O}}, ~ B(\mathrm{OH})_{3}$ functions as
(a) Protonic acid
(b) Bronsted acid
(c) Lewis base
(d) Lewis acid

Ans: (d)
Sol: Boric acid $B(O H)_{3}$ is a lewis acid
31. Match the following acids with their pKa values

Acid		pKa	
(A)	Phenol	i.	16
(B)	p-Nitrophenol	ii.	0.78
(C)	Ethanol	iii.	10
(D)	Picric acid	iv.	7.1

a	b	c	d
(a) iii	iv	i	ii
(b) iii	i	iv	ii
(c) ii	i	iii	iv
(d) iv	ii	iii	i

Ans: (a)
Sol: presence of electron with drawing group increases the acidic nature of phenol. Hence the order of acidic strength of phenol is given by

Picric acid $>\mathrm{p}-$ nitrophenol $>$ phenol $>$ ethanol
pKa (0.78)
(10)
(16)
32. Which of the following can be used to test the acidic nature of ethanol?
(a) Blue litmus solution
(b) NaHCO_{3}
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) $N a$ metal

Ans: (d)
Sol: Ethanol being a very weak acid does not give litmus test, NaHCO_{3} test and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. It only reacts with sodium metal to liberate hydrogen gas
33.

The reagent A, B and C respectively are
(a) $\mathrm{H}_{2} / \mathrm{Pd}, \mathrm{PCC}, \mathrm{NaBH}_{4}$
(b) $\mathrm{NaBH}_{4}, \mathrm{PCC}, \mathrm{H}_{2} / \mathrm{Pd}$
(c) NaBH_{4}, alk. $\mathrm{KMnO}_{4}, \mathrm{H}_{2} / \mathrm{Pd}$
(d) $\mathrm{H}_{2} / \mathrm{Pd}$, alk. $\mathrm{KMnO}_{4}, \mathrm{NaBH}_{4}$

Ans: (b)
Sol:

34. Propanoic acid undergoes HVZ reaction to give chloropropanoic acid. The product obtained is
(a) stronger acid than propanoic acid
(b) weaker acid than propanoic acid
(c) as stronger as propanoic acid
(d) stronger than dichloropropanoic acid

Ans: (a)
Sol:

Propanoic acid
Chcloropropanoic acid
Chloropropanoic acid is stronger than propanoic acid due to $-I$ effect.
35. $\mathrm{P} \xrightarrow{\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}} Q$
$\xrightarrow[\text { (ii) dil. } \mathrm{HCl}]{\text { (i) } \mathrm{con} \mathrm{NaOH}} R+S$
R and S form benzyl benzoate when treated with each other. Hence P is
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$

Ans: (b)
Sol: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} \xrightarrow{\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO} 4} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow[\text { dil } \mathrm{HCL}]{\mathrm{ConNaOH}}$

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
benzyl benzoate
36. Which of the following is a network crystalline solid?
(a) I_{2}
(b) NaCl
(c) $A l N$
(d) Ice

Ans: (c)
Sol: AlN (aluminium nitride) is a networking solid
37. The number of atoms in 2.4 g of body centred cubic crystal with edge length 200 pm is (density $=10 \mathrm{~g} \mathrm{~cm}^{-3}, N_{A}=6 \times 10^{23}$ atoms $\left./ \mathrm{mol}\right)$
(a) 6×10^{22}
(b) 6×10^{23}
(c) 6×10^{20}
(d) 6×10^{19}

Ans: (a)
Sol: $d=\frac{Z M}{a^{3} N 10^{-30}}$
$10=\frac{2 \times 2.4}{(200)^{3} N 10^{-30}}$
$N=\frac{2 \times 2.4}{8 \times 10^{-24} \times 10}=6 \times 10^{22}$
38. 1 mole of NaCl is doped with 10^{-5} mole of SrCl_{2}. The number of cationic vacancies in the crystal lattice will be
(a) 6.022×10^{18}
(b) 6.022×10^{23}
(c) 6.022×10^{15}
(d) 12.044×10^{20}

Ans: (a)
Sol: For each of Sr^{2+} introduced, 2 cation vacancy created
$\therefore 1$ mole of NaCl is doped with 10^{-5} moles of SrCl_{2}

$$
\begin{aligned}
\therefore \text { concentration of cation vacancy } & =10^{-5} \times 6.022 \times 10^{23} \\
& =6.022 \times 10^{18}
\end{aligned}
$$

39. A non-volatile solute, ' A ' tetramerises in water to the extent of $80 \% .2 .5 \mathrm{~g}$ of ' A ' in 100 g of water, lowers the freezing point by $0.3^{\circ} \mathrm{C}$. The molar mass of A in gram mol^{-1} is (K_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
(a) 62
(b) 155
(c) 221
(d) 354

Ans: (a)
Sol: $\alpha_{\text {ass }}=\frac{i-1}{1 / n-1}$
$0.8=\frac{i-1}{1 / 4-1}$
$i=1-0.6=0.4$
$\therefore \Delta T_{f}=\frac{i K_{f} W_{2} 1000}{W_{1} \times M_{2}}$
$0.3=\frac{0.4 \times 1.86 \times 2.5 \times 1000}{100 \times M_{2}}$
$M_{2}=62 \mathrm{~g} / \mathrm{mol}$
40. Solution ' A ' contains acetone dissolved in chloroform and solution ' B ' contains acetone dissolved in carbon disulphide. The type of deviations from Raoult's law shown by solutions A and B, respectively are
(a) positive and positive
(b) negative and negative
(c) positive and negative
(d) negative and positive

Ans: (d)

Sol: Solution A
Acetone
$+$
Chloroform
Negative
Deviation

Solution B

acetone
$+$
$C S_{2}$
Positive
deviation
41. Among the following, the main reactions occurring in blast furnace during extraction of iron from haematite are
i. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \longrightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
ii. $\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}$
iii. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \longrightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$
iv. $\mathrm{CaO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{CaSiO}_{3}$
(a) i and ii
(b) ii and iii
(c) iii and iv
(d) i and iv

Ans: (d)
Sol: Reaction at reduction zone $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
Slag zone $\quad \mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$
42. Which of the following pair contains 2 lone pair of electrons on the central atom?
(a) $\mathrm{I}_{3}^{+}, \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{XeF}_{4}, \mathrm{NH}_{3}$
(c) $\mathrm{H}_{2} \mathrm{O}, \mathrm{NF}_{3}$
(d) $\mathrm{SO}_{4}^{2-}, \mathrm{H}_{2} \mathrm{~S}$

Ans: (a)
Sol: I_{3}^{+}and $\mathrm{H}_{2} \mathrm{O}$ has two lone pairs surrounding the central metal ion.
43. Which of the following statement is correct?
(a) Cl_{2} oxidises $\mathrm{H}_{2} \mathrm{O}$ to O_{2} but F_{2} does not
(b) F_{2} oxidises $\mathrm{H}_{2} \mathrm{O}$ to O_{2} but Cl_{2} does not
(c) Cl_{2} is a stronger oxidising agent than F_{2}
(d) Fluoride is a good oxidising agent

Ans: (b)
Sol: F_{2} oxidises $\mathrm{H}_{2} \mathrm{O}$ to O_{2} but not Cl_{2}
44. 0.1 mole of $X e F_{6}$ is treated with 1.8 g of water. The product obtained is
(a) XeO_{3}
(b) XeOF_{4}
(c) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(d) $\mathrm{Xe}+\mathrm{XeO}_{3}$

Ans: (b)
Sol: $\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF}$
0.1 mole $\frac{1.8}{18}=0.1 \mathrm{~mole}$
45. In the reaction of gold with aquaregia, oxidation state of Nitrogen changes from
(a) +4 to +2
(b) +5 to +2
(c) +6 to +4
(d) +3 to +1

Ans: (b)
Sol: Aqua regia - mixture of $(1: 3)$ con. HNO_{3} and con. HCl
$\mathrm{Au}+\stackrel{+5}{\mathrm{HN}} \mathrm{O}_{3}+4 \mathrm{HCl} \rightleftharpoons\left[\mathrm{AuCl}_{4}\right]^{-}+\stackrel{+2}{\mathrm{NO}}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O}$
46. Addition of excess of AgNO_{3} to an aqueous solution of 1 mole of $\mathrm{PdCl}_{2} \cdot 4 \mathrm{NH}_{3}$ gives 2 moles of AgCl . The conductivity of this solution corresponds to
(a) 1:1 electrolyte
(b) 1:2 electrolyte
(c) 1:3 electrolyte
(d) 1:4 electrolyte

Ans: (b)
Sol: The formula of the complex is
$\left[\operatorname{Pd}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \rightarrow 1: 2$ electrolyte
47. The formula of pentaaquanitratochromium(III) nitrate is,
(a) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3}$
(b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$
(c) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{2}\right)_{2}$
(d) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{NO}_{3}$

Ans: (b)
Sol: $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$
48. Which of the following halide undergoes hydrolysis on warming with water/aqueous NaOH ?
(a)

(b)

(c)

(d)

Ans: (d)
Sol: Presence of electron with drawing group like NO_{2} at ortho or para position increases the reactivity of chlorobenzene.
49. The compound having longest $\mathrm{C}-\mathrm{Cl}$ bond is
(a)

(b)

(c)

(d) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$

Ans: (c)
Sol: $\mathrm{C}-\mathrm{Cl}$ bond length is higher in

50. The alkyl halides required to prepare
 by Wurtz reaction are
(a)
 and

(b)
 and

(c)
 and $<\mathrm{Cl}$
(d)
 and

Ans: (b)

Sol:

51. Which is a wrong statement?
(a) rate constant $k=$ Arrhenius constant A : if $E a=0$
(b) In k vs $\frac{1}{T}$ plot is a straight line
(c) $e^{-E a / R T}$ gives the fraction of reactant molecules that are activated at the given temperature
(d) presence of catalyst will not alter the value of $E a$

Ans: (d)
Sol: Catalyst decreases the activation energy of the reaction.
52. 1 L of 2 M CH 33 COOH is mixed with 1 L of $3 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to form an ester. The rate of the reaction with respect to the initial rate when each solution is diluted with an equal volume of water will be
(a) 0.25 times
(b) 0.5 times
(c) 2 times
(d) 4 times

Ans: (a)
Sol: Rate $=\mathrm{K}\left[\mathrm{CH}_{2} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]$

$$
\begin{aligned}
r_{1}=K & \frac{2}{2} \times \frac{3}{2} & \therefore & \frac{r_{2}}{r_{1}}
\end{aligned}=\frac{6}{16} \times \frac{4}{6} .
$$

53. Which of the following is an example of homogeneous catalysis?
(a) oxidation of NH_{3} in Ostwald's process
(b) oxidation of SO_{2} in lead chamber process
(c) oxidation of SO_{2} in contact process
(d) manufacture of NH_{3} by Haber's process

Ans: (b)
Sol: Reaction in lead chamber process

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{NO}(\mathrm{~g})} 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Example for homogeneous catalysis
54. Critical Micelle concentration for a soap solution is $1.5 \times 10^{-4} \mathrm{molL}^{-1}$. Micelle formation is possible only when the concentration of soap solution in $\mathrm{mol} \mathrm{L}^{-1}$ is
(a) 2.0×10^{-3}
(b) 7.5×10^{-5}
(c) 4.6×10^{-5}
(d) 1.1×10^{-4}

Ans: (a)
Sol: Micelle formation is possible only above critical micelle concentration.
55. Oxidation state of copper is +1 in
(a) Malachite
(b) Azurite
(c) Cuprite
(d) Chalcopyrite

Ans: (c or d)
Sol: Composition of Chalcopyrite $\left(\mathrm{CuFeS}_{2}\right)$

$$
\begin{aligned}
& \text { Malachite }\left(\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}\right) \\
& \text { Azurite }\left(2 \mathrm{CuCo}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}\right) \\
& \text { Cuprite }\left(\mathrm{Cu}_{2} \mathrm{O}\right)
\end{aligned}
$$

56. The metal nitrate that liberates NO_{2} on heating
(a) NaNO_{3}
(b) KNO_{3}
(c) LiNO_{3}
(d) RbNO_{3}

Ans: (c)
Sol: LiNO_{3} like alkaline earth metal decomposes to give NO_{2}

$$
4 \mathrm{LiNO}_{3} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

57. Which of the following is NOT true regarding the usage of hydrogen as a fuel?
(a) High calorific value
(b) Combustion product is ecofriendly
(c) The combustible energy of hydrogen can be directly converted to electrical energy in a fuel cell
(d) Hydrogen gas can be easily liquefied and stored

Ans: (d)
Sol: Hydrogen gas storage is very difficult because it is highly inflammable
58. Resonance effect is not observed in
(a) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$
(c) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{N}$
(d) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

Ans: (d)
Sol: Resonance effect is possible only in conjugate systems.
59. 2-butyne is reduced to trans-but-2-ene using
(a) $\mathrm{H}_{2} \mid \mathrm{Ni}$
(b) $H_{2} \mid P d-C$
(c) Na in liq. NH_{3}
(d) Zn in dil. HCl

Ans: (c)
Sol: 2 butyne $\xrightarrow{\mathrm{NallqNH}_{3}}$ trans - but - 2 - ene
60. Eutrophication causes
(a) increase of nutrients in water
(b) reduction in dissolved oxygen
(c) reduction in water pollution
(d) decreases BOD

Ans: (b)
Sol: Eutrophication increases nutrients in water.

Key Answers:

1. d	2. c	3. d	4. c	5. a	6. b	7. a	8. b	9. d	10. b
11. b	12. a	13. b	14. b	15. d	16. b	17. d	18. d	19. d	20. b
21. c	22. c	23. c	24. c	25. a	26. a	27. c	28. c	29. a	30. d
31. a	32. d	33. b	34. a	35. b	36. c	37. a	38. a	39. a	40. d
41. d	42. a	43. b	44. b	45. b	46. b	47. b	48. d	49. c	50. b
51. d	52. a	53. b	54. a	55. cd	56. c	57. d	58. d	59. c	60. b

