

(CFSE) for $[CoCl_4]^{2-}$ will be (A) 10,000 cm⁻¹ (B) 18000 cm⁻¹ (C) 16000 cm⁻¹ (D) 8000 cm⁻¹ Sol: $\Delta_t = \frac{4}{9} \Delta_0$ $= \frac{4}{9} \times 18000 = 8000 \text{ cm}^{-1}$ Ans: (D)

3. The complex hexammineplatinum (IV) chloride will give _____ number of ions on ionization.

(A) 2 (B) 5 (C) 4 (D) 3

Sol: Hexammineplatinum(IV) chloride $\rightarrow \left[Pt(NH_3)_6 \right] Cl_4$

$$\left[Pt(NH_3)_6\right]Cl_4 \rightleftharpoons \left[Pt(NH_3)_6\right]^{4+} + 4Cl^{-}$$

$$\therefore \text{ No of ions} \to 5$$

Ans: (B)

4. In the following pairs of halogen compounds, which compound undergoes faster $S_N 1$ reaction?

7. An organic compound with molecular formula C_7H_8O dissolves in *NaOH* and gives a characteristic colour with *FeCl*₃. On treatment with bromine, it gives a tribromo derivative $C_7H_5OBr_3$. The compound is

Ans: (D)

- 8. In Kolbes reaction the reacting substances are
 - (A) Phenol and *CHCl*₃

Sol:

Ans: (B)

9. The major product obtained when ethanol is heated with excess of conc. H_2SO_4 at 443K is

(A) methane (B) ethene (C) ethyne (D) ethane Sol: $C_2H_5OH \xrightarrow{\operatorname{con}H_2SO_4}{443\,K} CH_2 = CH_2$

Ans: (B)

- 10. Among the following, the products formed by the reaction of anisole with HI are:
 - (A) Phenol + Methane (B) Phenol +
 - (C) Sodium phenate + Methanol
- (B) Phenol + Iodomethane(D) Benzene + Methanol

(B) Sodium phenate and CO₂

Sol:

Ans: (B)

11. Which one of the following Chlorohydrocarbon readily undergoes solvolysis?

Sol:

as $\overset{+}{\bigcirc} CH_2$ formed is very stable.

Ans: (D)

12. Identify the products *A* and *B* in the reactions:

$$R - X + A g CN \rightarrow A + A g X$$

$$R - X + KCN \rightarrow B + KX$$
(A) $A = RNC; B = RNC$
(B) $A = R - CN; B = RCN$
(C) $A = RCN; B = RCN$
(D) $A = RNC; B = RCN$
Sol: A: RNC
B: RCN

Ans: (D)

13. Reaction by which benzaldehyde cannot be prepared is

(A) Benzoyl chloride
$$+H_2 \xrightarrow{N-BaSO_4} \Delta$$

(B) Benzene $+CO + HCl \xrightarrow{anhydrousAlCl_3} \Delta$
(C) Benzoic acid $\xrightarrow{Zn-H \text{ g and } con.HCl} \Delta$
(D) Toluene $\xrightarrow{(i) CrO_2Cl_2 \text{ in } CS_2} (ii) H_3O^+$

Sol: Benzoic acid cannot be reduced with Zn - Hg and Con. HCl

Ans: (C)

14. The test to differentiate between pentan -2 – one and pentan -1 – one is

(A) Iodoform test	(B) Baeyer's test	(C) Benedict's test	(D) Fehling's test
Sol: Iodoform test			

Ans: (A)

15. In Carbyl; amine test for primary amines the resulting foul smelling product is

(A) $COCl_2$ (B) CH_3NCl_2 (C) CH_3CN (D) CH_3NC

Sol: *CH*₃*NC* is the foul smelling product obtained

Ans: (D)

16. Ethanoic acid undergoes Hell-Volhard Zelinsky reaction but Methanoic acid does not, because of

- (A) higher acidic strength of ethanoic acid than methanoic acid
- (B) presence of αH atom in ethanoic acid
- (C) presence of αH atom in ethanoic acid
- (D) absence of αH atom in ethanoic acid

Sol: Presence of $\alpha - H$ in ethanoic acid

$$H_3C$$
—COOH $\xrightarrow{\text{Red P, Cl}_2}$ H_2C —COOH
| Cl

Ans: (C)

- 17. The general name of the compound formed by the reaction between aldehyde and alcohol is
 - (A) Acetate (B) Ester (C) Acetal

(D) Glycol

Sol: Acetals are formed

Ans: (C)

18. Which institute has approved the emergency use of 2-deoxy-D-Glucose as additive therapy for COVID –

19 patients?

- (A) Drug Controller General of India
- (B) Indian Council of Medical Research
- (C) World Health Organisation
- (D) Ministry of Health and Family Welfare
- Sol: Indian Council of medical research

Ans: (B)

- 19. A Nucleic acid, whether DNA or RNA gives on complete hydrolysis, two purine bases, two pyrimidine bases, a pentose sugar and phosphoric acid. Nucleotides which are intermediate products in the hydrolysis contain
 - (A) Purine or pyrimidine base, a pentose sugar and ortho-phosphoric acid
 - (B) purine or pyrimidine base and pentose sugar.
 - (C) a purine base, pentose sugar and ortho-phosphoric acid
 - (D) purine or pyrimidine base and ortho-phosphoric acid
 - Sol: Nucleotides are madeup of purine or pyramidine base, pentose sugar and orthophosphoric acid Ans: (A)
- 20. A secondary amine is
 - (A) a compound in which 2 of the hydrogen of *NH*₃ have been replaced by organic groups
 - (B) an organic compound with two NH_2 group
 - (C) a compound with two carbon atom and an NH_2 group
 - (D) a compound with an NH_2 group on the carbon atom in number 2 position

Sol: Secondary amines $(R_2 - NH)$ is a compound in which 2 hydrogens of NH_3 replaced by alkyl group

or aryl groups

Ans: (A)

- 21. Which of the following is correctly matched?
 - (A) Polyster tetrafluoroethene (B) Nylon acrylonitrile
 - (C) Teflon copralactum (D) Bakelite Novolac

Sol: Bakelite - Novolac

Ans: (D)

- 22. Elements X, Y and Z have atomic numbers 19, 37 and 55 respectively. Which of the following statements is true about them?
 - (A) Y would have the highest ionization potential
 - (B) Their ionisation potential would increase with increasing atomic number.
 - (C) Y would have an ionisation potential between those of X and Z.
 - (D) Z would have the highest ionisation potential.

Sol: Given elements are $K(19, 419 \text{ kJ mol}^{-1})$, $Rb(37, 403 \text{ kJ mol}^{-1})$ and $Cs(55, 374 \text{ kJ mol}^{-1})$ belong to I group *Rb* has IE between *K* and *Cs*. Ans: (C) 23. In oxygen and carbon molecule the bonding is (A) $O_2: 0\sigma, 2\pi; C_2: 2\sigma, 0\pi$ (B) $O_2 : 1\sigma, 1\pi; C_2 : 1\sigma, 1\pi$ (D) $O_2: 1\sigma, 1\pi; C_2: 0\sigma, 2\pi$ (C) $O_2: 2\sigma, 0\pi; C_2: 0\sigma, 2\pi$ Sol: $O_2 : 1\sigma$, 1π and $C_2 : 0\sigma$, 2π bonds Ans: (D) 24. Which is most VISCOUS? (A) Glycerol (B) Methanol (C) Ethanol (D) Ethylene glycol Sol: Glycerol is more viscous because of higher number of hydrogen bonds Ans: (A) 25. The volume of 2.8 g of CO at 27 °C and 0.821 atm. pressure is $\left(R = 0.08210 \text{ lit.atm.} K^{-1} mol^{-1}\right)$ (A) 30 litres (B) 0.3 litres (C) 1.5 litres (D) 3 litres Sol: PV = nRT

$$V = \frac{nRT}{P} = \frac{\frac{2.8}{28} \times 0.0821 \times 300}{0.821} = 3 \text{ L}$$

Ans: (D)

26. The work done when 2 moles of an ideal gas expands reversibly and isothermally from a volume of 1L

to 10*L* at 300 *K* is
$$(R = 0.0083 \, kJ \, K \, mol^{-1})$$

(A) 58.5 *kJ*
(B) 11.5 *kJ*
(C) 5.8 *kJ*
(D) 0.115 *kJ*
Sol: $w = -2.303nRT \log \frac{v_2}{v_1} = -2.303 \times 0.0083 \times 2 \times 300 \log \frac{10}{1} = -11.46 \, kJ$

Ans: (B)

27. An aqueous solution of alcohol contains 18 g of water and 414 g of ethyl alcohol. The mole fraction of water is

(A) 0.9 (B) 0.1 (C) 0.4 (D) 0.7
Sol:
$$n_{H_2O} = \frac{18}{18} = 1$$
 $n_{C_2H_5OH} = \frac{414}{46} = 9$
 $\chi_{H_2O} = \frac{1}{1+9} = \frac{1}{10} = 0.1$
Ans: (B)

- 28. If wavelength of photon is $2.2 \times 10^{-11} m$ and $h = 6.6 \times 10^{-34} J s$, then momentum of photon
 - (A) $6.89 \times 10^{+43} kg m s^{-1}$ (B) $3 \times 10^{-23} kg m s^{-1}$ (C) $3.33 \times 10^{-22} kg m s^{-1}$ (D) $1.452 \times 10^{-44} kg m s^{-1}$

Sol: According de-Broglie's equation

$$\lambda = \frac{h}{p}$$

2.2×10⁻¹¹ = $\frac{6.6 \times 10^{-34}}{P}$ or $P = 3.0 \times 10^{-23} \text{ kg ms}^{-1}$
Ans: (B)

29. In which of the following compounds, an element exhibits two different oxidation states?

	(A) N_3H	(B) NH_2CONH_2	(C) NH_4NO_3	(D) N_2H_4			
	Sol: $\overset{-3}{N}H_4 \overset{+5}{NO_3}$						
	$NH_4^+ = x + 4(1) = 1$ or $x =$	-3					
	$NO_3^- = x + 3(-2) = -1$ or x	= +5					
	Ans: (C)						
30.	Which of the following hy	drides is electron defic	ient?				
	(A) $B_2 H_6$	(B) <i>NaH</i>	(C) <i>CaH</i> ₂	(D) <i>CH</i> ₄			
	Sol: B_2H_6 is electron define	zient					
	Ans: (A)						
31.	Amphoteric oxide among	the following					
	(A) SnO_2	(B) <i>BeO</i>	(C) <i>CO</i> ₂	(D) <i>Ag</i> ₂ <i>O</i>			
	Sol: Both SnO_2 and BeO a	mphoteric					
	Ans: (A) and (B)						
32.	Which property of CO_2 m	Vhich property of CO_2 makes it biologically and geo-chemically important?					
	(A) Its high compressi	ibility	(B) Its acidic natur	e			
	(C) Its colourless and odourless nature (D) Its low solubility in water						
	Sol: Low solubility of <i>CO</i> ₂	in water					
	Ans: (D)						
33.	The IUPAC name for						
	O II	0 					
	СH ₃ —С—СH ₂ —СH ₂ -	_Сон					
	(A) 4 – oxopentanoic a	acid	(B) 1–hydroxy pe	entance – 1, 4 – dione			
	(C) 1,4 – dioxopentance	ol	(D) 1–carboxybut	an –3 – one			
	Sol: 4- Oxopentanoic acid						
	Ans: (A)						
34.	1 mole of HI is heated in	a closed container of	capacity of 2L. At	equilibrium half a mole of HI is			
	dissociated. The equilibriu	um constant of the reac	tion is				

(A) 0.35 (B) 1 (C) 0.5 (D) 0.25

Sol: $2HI \Longrightarrow H_2 + I_2$

-

1 mole

$$\frac{1}{2} \operatorname{mole} \qquad \frac{1}{2} \operatorname{mole} \qquad \frac{1}{2} \operatorname{mole}$$
$$\therefore K_c = \frac{\frac{1}{2 \times 2} \times \frac{1}{2 \times 2}}{\left[\frac{1}{2 \times 2}\right]^2} = 1$$

Ans: (B)

35. Which among the following has higest pH?

(A) 0.1 M NaOH (B) 1 M HCI (C) 1 M NaOH (D) $1 M H_2SO_4$ Sol: $\left[OH^{-}\right] = 1$ $\therefore POH = -\log(1) = 0$ $\therefore pH = 14 - 0 = 14$ Ans: (C)

36. How many number of atoms are there in a cube based unit cell, having one atom on each corner and 2 atom on each body diagonal of cube?

Sol: The contribution from corner particle $= 8 \times \frac{1}{8} = 1$

The contribution from body diagonal $2 \times 4 = 8$

Total number of particles = 1 + 8 = 9

Ans: (A)

- 37. Which of the following is <u>NOT</u> true about the amorphous solids?
 - (A) They are anisotropic nature.
 - (B) On heating they may become crystalline at certain temperature.
 - (C) They may become crystalline on keeping for long time.
 - (D) Amorphous solids can be moulded by heating.
 - Sol: Amorphous solids are isotropic in nature

Ans: (A)

38. Identify A and B in the reaction

Sol:

Ans: (C)

39. Vacant space in body centered cubic lattice unit cell is about

Sol: Vacant space in *bcc* lattice : 32%

Ans: (B)

- 40. The rise in boiling point of a solution containing 1.8g of glucose in 100 g of solvent is $0.1 \degree C$. The molal elevation constant of the liquid is
 - (A) $10 \ K \ kg \ / \ mol$ (B) $0.1K \ kg \ / \ mol$ (C) $1 \ K \ kg \ / \ mol$ (D) $2 \ K \ kg \ / \ mol$ Sol: $\Delta T_f = \frac{1000 \times k_f \times w_2}{w_1 \times M_2}$ $0.1 = \frac{1000 \times k_f \times 1.8}{100 \times 180} \ \text{or} \ k_f = 1 \ K \ \text{kg/mol}$ Ans: (C)
- 41. If 3 *g* of glucose (molar mass = 180 g) is dissolved in 60 g of water at 15 °C, the osmotic pressure of the solution will be
 - (A) 5.57 atm (B) 0.34 atm (C) 0.65 atm (D) 6.57 atm Sol: $\pi = \frac{w_2 RT}{MV} = \frac{3 \times 0.0821 \times 288}{180 \times 60/100} = 6.57$ atm
 - Ans: (D)
- 42. Which of the following colligative properties can provide molar mass of proteins, polymers and colloids with greater precision?
 - (A) Osmotic pressure (B) Relative lowering of vapour pressure
 - (D) Depression in freezing point

(B) Platinum - Palladium

(D) Zinc - Mercury

Sol: Osmotic pressure

Ans: (A)

```
43. In Fuel cells ______ are used as catalysts
```

- (A) Lead Manganese
- (C) Nickel Cadmium

(C) Elevation in boiling point

Sol: Platinum - Pallidium

Ans: (B)

44. The molar conductivity is maximum for the solution of concentration

(A) 0.001 M	(B) 0.004 M	(C) 0.002 M	(D) 0.005 M
-------------	-------------	-------------	-------------

Sol: Molar conductivity increases with dilution.

:.0.001M

Ans: (A)

- 45. Alkali haildes do not show dislocation defect because
 - (A) There is large difference in size of cation and anions.
 - (B) Cations and anions have low co-ordination number.
 - (C) Anions cannot be accommodated in vacant spaces.
 - (D) Cations and anions have almost equal size.

Sol: They are not found in alkali metal halides as the alkali metal ions cannot fit into the interstitial sites of all the options given option (D) is correct.

Ans: (D)

- 46. Solubility of a gas in a liquid increases with
 - (A) decrease of *P* and decrease of *T*(B) increase of *P* and increase of *T*(C) decrease of *P* and increase of *T*(D) increase of *P* and decrease of *T*

Sol: Solubility of a gas in a liquid increases with increase in pressure and decrease in temperature. Ans: (D)

47. For nth order of reaction, Half-life period is directly proportional to

- (A) a^{1-n} (B) $\frac{1}{a^{n-1}}$ (C) $\frac{1}{a^{1-n}}$ (D) a^{n-1} Sol: $t_{\frac{1}{2}} \propto \frac{1}{a^{n-1}}$ Ans: (B)
- 48. half-life of a reaction is found to be inversely proportional to the fifth power of its initial concentration, the order of reaction is

(A) 6 (B) 3 (C) 4 (D) 5 Sol: $t_{\frac{1}{2}} \alpha \frac{1}{a^{n-1}}$ $\therefore n = 6$ Ans: (A)

49. A first order reaction is half completed in 45 min. How long does it need 99.9% of the reaction to be completed?

```
(A) 20 Hours (B) 5 Hours (C) 7.5 Hours (D) 10 Hours
Sol: t_{99,9} = 10 \times t_1
= 10 \times 45 = 450 or 7.5 hr
Ans: (C)
```

50. The rate of the reaction:

 $CH_3COOC_2H_5+NaOH \rightarrow CH_3COONa+C_2H_5OH$ is given by the equation,

Rate = $K = K [CH_3COOC_2H_5][NaOH]$. If concentration is expressed in mol L^{-1} , the unit of K is

(A) s^{-1} (B) $\text{mol}^{-2} L^2 s^{-1}$ (C) $\text{mol} L^{-1} s^{-1}$ (D) $L \text{mol}^{-1} s^{-1}$

Sol: If is a second order reaction

 \therefore unit of rate constant is $L \mod^{-1} s^{-1}$

Ans: (D)

51. Colloidal solution commonly used in the treatment of skin disease is

(A) Colloidal Antimony	(B) Colloidal Sulphur			
(C) Colloidal Silver	(D) Colloidal Gold			

Sol: Colloidal Sulphur

Ans: (B)

52. Specific conductance of $0.1 M HNO_3$ is 6.3×10^{-2} ohm⁻¹ cm⁻¹. The molar conductance the solution is

(A) $63.0 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ (B) $630 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ (C) $315 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ (D) $6.300 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ Sol: $\wedge_m = \frac{1000 \times K}{C} = \frac{1000 \times 6.3 \times 10^{-2}}{0.1}$ $= 630 \text{ ohm}^{-1} \text{m}^2 \text{mol}^{-1}$ Ans: (B) 53. For spontaneity of a cell, which is correct? (A) $\Delta G = -ve$ (B) $\Delta G = 0, \Delta E = 0$ (C) $\Delta G = -ve, \Delta E = 0$ (D) $\Delta G = +ve, \Delta E = +ve$ Sol: $\Delta G = -ve$ Ans: (A) 54. Which noble gas has least tendency to form compounds? (B) *He* (C) Ne (D) Ar (A) *Kr* Sol: He cannot form any compounds because very high ionization enthalpy. Ans: (B) 55. $(NH_4)_2 Cr_2 O_7$ on heating liberates a gas. The same gas will be obtained by (A) treating Mg_3N_2 with H_2O (B) hearing NH_4NO_3 (D) treating H_2O_2 with $NaNO_2$ (C) heating NH_4NO_2 Sol: $(NH_4)Cr_2O_7 \longrightarrow N_2 \uparrow +Cr_2O_3 + 4H_2O$

Ans: (C)

 $NH_4NO_2 \longrightarrow N_2 \uparrow +2H_2O$

- 56. The strong reducing property of hypophosphorous acid is due to
 - (A) presence of phosphorus in its highest oxidation state
 - (B) its concentration
 - (C) the positive valence of phosphorus

(D) two P - H bonds

Sol:

Two P - H bonds.OHypo phosphorus compoundsH - P - OH

Ans: (D)

57. A transition metal exists in its highest oxidation state. It is expected to behave as

- (A) a reducing agent
- (B) a chelating agent
- (C) a central metal in a co-ordination compound
- (D) an oxidation agent

Sol: A transition metal in its highest oxidation state behaves like a good oxidizing agent(If undergoes reduction easily).

Ans: (D)

- 58. What will be the value of *x* in Fe^{x+} , if the magnetic moment $\mu = \sqrt{24} BM$?
- (B) +2 (C) +3 (A) +1 (D) 0 Sol: $\mu = \sqrt{n(n+2)}$ When n = 4 $\mu = \sqrt{4(4+2)} = \sqrt{24}$ There should be 4 unpaired electrons \therefore ion is Fe^{2+} (3d⁶ configuration) Ans: (B) 59. Which can absorb larger volume of hydrogen gas? (A) Colloidal $Fe(OH)_3$ (B) Finely divided nickel (C) Colloidal solution of palladium (D) Finely divided platinum Sol: Hydrogen gas is best absorbed by colloidal solution of palladium. Ans: (C) 60. The property of halogens which is not correctly matched is (A) F > Cl > Br > I (electron gain enthalpy) (B) F > Cl > Br > I (ionization enthalpy) (C) F > Cl > Br > I (electronegativity) (D) I > Br > Cl > F (density)

Sol: Cl > F > Br > I

Ans: (A)

Key Answers:

1. B	2. D	3. B	4. C	5. D	6. C	7. D	8. B	9. B	10. B
11. D	12. D	13. C	14. A	15. D	16. C	17. C	18. B	19. A	20. A
21. D	22. C	23. D	24. A	25. D	26. B	27. B	28. B	29. C	30. A
31. A, B	32. D	33. A	34. B	35. C	36. A	37. A	38. C	39. B	40. C
41. D	42. A	43. B	44. A	45. D	46. D	47. B	48. A	49. C	50. D
51. B	52. B	53. A	54. B	55. C	56. D	57. D	58. B	59. C	60. A