KCET Board Exam - 2022

Subject: Chemistry
CODE: \qquad

1. The correct IUPAC name of cis- platin is
(A) dichloride diammine platinum
(B) diammine dichloride platinum (II)
(C) diammine dichloride platinum (IV)
(D) diammine dichloride platinum (0)

Sol: Diamminedichloridoplatinum(II)
Ans: (B)
2. Crystal Field Splitting Energy (CFSE) for $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18000 \mathrm{~cm}^{-1}$. The Crystal Field splitting Energy (CFSE) for $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be
(A) $10,000 \mathrm{~cm}^{-1}$
(B) $18000 \mathrm{~cm}^{-1}$
(C) $16000 \mathrm{~cm}^{-1}$
(D) $8000 \mathrm{~cm}^{-1}$

Sol: $\Delta_{t}=\frac{4}{9} \Delta_{0}$
$=\frac{4}{9} \times 18000=8000 \mathrm{~cm}^{-1}$
Ans: (D)
3. The complex hexammineplatinum (IV) chloride will give \qquad number of ions on ionization.
(A) 2
(B) 5
(C) 4
(D) 3

Sol: Hexammineplatinum(IV) chloride $\rightarrow\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4}$
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4} \rightleftharpoons\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]^{4+}+4 \mathrm{Cl}^{-}$
\therefore No of ions $\rightarrow 5$
Ans: (B)
4. In the following pairs of halogen compounds, which compound undergoes faster $S_{N} 1$ reaction?
(i)
 and

(ii)

(i)

(ii)

(C)
(i)

(ii)

(D)
(i)

(ii)

Sol: The reactivity order for $S_{N^{1}}$ is $3^{\circ}>2^{\circ}>1^{\circ}$

and

Ans: (C)
5. The only Lanthanoid which is radioactive
(A) Praseodymium
(B) Lanthanum
(C) Cerium
(D) Promethium

Sol: Promethium
Ans: (D)
6. All $\mathrm{Cu}(\mathrm{II})$ halides are known, except the iodide, the reason for it is that
(A) Cu^{+2} ion has smaller size
(B) Iodide is bulky ion
(C) Cu^{+2} oxidises iodide to iodine
(D) Cu^{+2} has much more negative hydration enthalpy

Sol: Cu^{2+} oxidises iodide to iodine
Ans: (C)
7. An organic compound with molecular formula $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ dissolves in NaOH and gives a characteristic colour with FeCl_{3}. On treatment with bromine, it gives a tribromo derivative $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OBr}_{3}$. The compound is
(A) p-Cresol
(B) Benzyl alcohol
(C) o- Cresol
(D) m-Cresol

Sol:
Only m-cresol
Ans: (D)
8. In Kolbes reaction the reacting substances are
(A) Phenol and CHCl_{3}
(B) Sodium phenate and CO_{2}
(C) Phenol and CCl_{4}
(d) Sodium phenate and CCl .

Sol:

Ans: (B)
9. The major product obtained when ethanol is heated with excess of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 443 K is
(A) methane
(B) ethene
(C) ethyne
(D) ethane

Sol: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow[443 \mathrm{~K}]{\mathrm{con} \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{2}=\mathrm{CH}_{2}$
Ans: (B)
10. Among the following, the products formed by the reaction of anisole with HI are:
(A) Phenol + Methane
(B) Phenol + Iodomethane
(C) Sodium phenate + Methanol
(D) Benzene + Methanol

Sol:

Ans: (B)
11. Which one of the following Chlorohydrocarbon readily undergoes solvolysis?
(A)

(B) $\mathrm{CH}_{2}=\mathrm{CHCl}$
(C)

(D)

Sol:

as

formed is very stable.

Ans: (D)
12. Identify the products A and B in the reactions:
$R-X+A \mathrm{~g} C N \rightarrow A+A \mathrm{~g} X$
$R-X+K C N \rightarrow B+K X$
(A) $A=R N C ; B=R N C$
(B) $A=R-C N ; B=R C N$
(C) $A=R C N ; B=R C N$
(D) $A=R N C ; B=R C N$

Sol: A: RNC B: RCN
Ans: (D)
13. Reaction by which benzaldehyde cannot be prepared is
(A) Benzoyl chloride $+\mathrm{H}_{2} \xrightarrow[\Delta]{\mathrm{N}-\mathrm{BaSO}_{4}}$
(B) Benzene $+\mathrm{CO}+\mathrm{HCl} \xrightarrow{\text { anhydrous } \mathrm{AlCl}_{3}}$
(C) Benzoic acid $\xrightarrow{\mathrm{Zn}-\mathrm{H} \text { g and } \text { con. } \mathrm{HCl}}$
(D) Toluene $\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{CrO}_{2} \mathrm{Cl}_{2} \text { in } \mathrm{CS}_{2}}$

Sol: Benzoic acid cannot be reduced with $\mathrm{Zn}-\mathrm{Hg}$ and Con . HCl
Ans: (C)
14. The test to differentiate between pentan -2 - one and pentan -1 - one is
(A) Iodoform test
(B) Baeyer's test
(C) Benedict's test
(D) Fehling's test

Sol: Iodoform test
Ans: (A)
15. In Carbyl;amine test for primary amines the resulting foul smelling product is
(A) COCl_{2}
(B) $\mathrm{CH}_{3} \mathrm{NCl}_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CN}$
(D) $\mathrm{CH}_{3} \mathrm{NC}$

Sol: $\mathrm{CH}_{3} \mathrm{NC}$ is the foul smelling product obtained
Ans: (D)
16. Ethanoic acid undergoes Hell-Volhard Zelinsky reaction but Methanoic acid does not, because of
(A) higher acidic strength of ethanoic acid than methanoic acid
(B) presence of $\alpha-H$ atom in ethanoic acid
(C) presence of $\alpha-H$ atom in ethanoic acid
(D) absence of $\alpha-H$ atom in ethanoic acid

Sol: Presence of $\alpha-H$ in ethanoic acid

Ans: (C)
17. The general name of the compound formed by the reaction between aldehyde and alcohol is
(A) Acetate
(B) Ester
(C) Acetal
(D) Glycol

Sol: Acetals are formed
Ans: (C)
18. Which institute has approved the emergency use of 2-deoxy-D-Glucose as additive therapy for COVID 19 patients?
(A) Drug Controller General of India
(B) Indian Council of Medical Research
(C) World Health Organisation
(D) Ministry of Health and Family Welfare

Sol: Indian Council of medical research
Ans: (B)
19. A Nucleic acid, whether DNA or RNA gives on complete hydrolysis, two purine bases, two pyrimidine bases, a pentose sugar and phosphoric acid. Nucleotides which are intermediate products in the hydrolysis contain
(A) Purine or pyrimidine base, a pentose sugar and ortho-phosphoric acid
(B) purine or pyrimidine base and pentose sugar.
(C) a purine base, pentose sugar and ortho-phosphoric acid
(D) purine or pyrimidine base and ortho-phosphoric acid

Sol: Nucleotides are madeup of purine or pyramidine base, pentose sugar and orthophosphoric acid Ans: (A)
20. A secondary amine is
(A) a compound in which 2 of the hydrogen of NH_{3} have been replaced by organic groups
(B) an organic compound with two NH_{2} group
(C) a compound with two carbon atom and an NH_{2} group
(D) a compound with an NH_{2} group on the carbon atom in number 2 position

Sol: Secondary amines $\left(R_{2}-N H\right)$ is a compound in which 2 hydrogens of NH_{3} replaced by alkyl group or aryl groups

Ans: (A)
21. Which of the following is correctly matched?
(A) Polyster - tetrafluoroethene
(B) Nylon - acrylonitrile
(C) Teflon - copralactum
(D) Bakelite - Novolac

Sol: Bakelite - Novolac
Ans: (D)
22. Elements X, Y and Z have atomic numbers 19,37 and 55 respectively. Which of the following statements is true about them?
(A) Y would have the highest ionization potential
(B) Their ionisation potential would increase with increasing atomic number.
(C) Y would have an ionisation potential between those of X and Z .
(D) Z would have the highest ionisation potential.

Sol: Given elements are $K\left(19,419 \mathrm{~kJ} \mathrm{~mol}^{-1}\right), R b\left(37,403 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and $C s\left(55,374 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ belong to I group $R b$ has IE between K and $C s$.

Ans: (C)
23. In oxygen and carbon molecule the bonding is
(A) $O_{2}: 0 \sigma, 2 \pi ; C_{2}: 2 \sigma, 0 \pi$
(B) $O_{2}: 1 \sigma, 1 \pi ; C_{2}: 1 \sigma, 1 \pi$
(C) $O_{2}: 2 \sigma, 0 \pi ; C_{2}: 0 \sigma, 2 \pi$
(D) $O_{2}: 1 \sigma, 1 \pi ; C_{2}: 0 \sigma, 2 \pi$

Sol: $O_{2}: 1 \sigma, 1 \pi$ and $C_{2}: 0 \sigma, 2 \pi$ bonds
Ans: (D)
24. Which is most VISCOUS?
(A) Glycerol
(B) Methanol
(C) Ethanol
(D) Ethylene glycol

Sol: Glycerol is more viscous because of higher number of hydrogen bonds
Ans: (A)
25. The volume of 2.8 g of CO at $27^{\circ} \mathrm{C}$ and 0.821 atm . pressure is $\left(R=0.08210\right.$ lit.atm. $\left.\mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
(A) 30 litres
(B) 0.3 litres
(C) 1.5 litres
(D) 3 litres

Sol: $P V=n R T$
$V=\frac{n R T}{P}=\frac{\frac{2.8}{28} \times 0.0821 \times 300}{0.821}=3 \mathrm{~L}$
Ans: (D)
26. The work done when 2 moles of an ideal gas expands reversibly and isothermally from a volume of $1 L$ to 10 L at 300 K is $\left(R=0.0083 \mathrm{~kJ} \mathrm{~K} \mathrm{~mol}^{-1}\right)$
(A) 58.5 kJ
(B) 11.5 kJ
(C) 5.8 kJ
(D) 0.115 kJ

Sol: $w=-2.303 n R T \log \frac{v_{2}}{v_{1}}=-2.303 \times 0.0083 \times 2 \times 300 \log \frac{10}{1}=-11.46 \mathrm{~kJ}$
Ans: (B)
27. An aqueous solution of alcohol contains $18 g$ of water and $414 g$ of ethyl alcohol. The mole fraction of water is
(A) 0.9
(B) 0.1
(C) 0.4
(D) 0.7

Sol: $n_{\mathrm{H}_{2} \mathrm{O}}=\frac{18}{18}=1 \quad n_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=\frac{414}{46}=9$
$\chi_{\mathrm{H}_{2} \mathrm{O}}=\frac{1}{1+9}=\frac{1}{10}=0.1$
Ans: (B)
28. If wavelength of photon is $2.2 \times 10^{-11} \mathrm{~m}$ and $h=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$, then momentum of photon
(A) $6.89 \times 10^{+43} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(B) $3 \times 10^{-23} \mathrm{~kg} \mathrm{~ms}^{-1}$
(C) $3.33 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(D) $1.452 \times 10^{-44} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$

Sol: According de-Broglie's equation
$\lambda=\frac{h}{p}$
$2.2 \times 10^{-11}=\frac{6.6 \times 10^{-34}}{P}$ or $P=3.0 \times 10^{-23} \mathrm{~kg} \mathrm{~ms}^{-1}$
Ans: (B)
29. In which of the following compounds, an element exhibits two different oxidation states?
(A) $N_{3} H$
(B) $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
(C) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(D) $\mathrm{N}_{2} \mathrm{H}_{4}$

Sol: $\stackrel{-3}{N} \mathrm{H}_{4} \stackrel{+5}{\mathrm{NO}_{3}}$
$N H_{4}^{+}=x+4(1)=1$ or $x=-3$
$\mathrm{NO}_{3}^{-}=x+3(-2)=-1$ or $x=+5$
Ans: (C)
30. Which of the following hydrides is electron deficient?
(A) $B_{2} H_{6}$
(B) NaH
(C) CaH_{2}
(D) CH_{4}

Sol: $B_{2} H_{6}$ is electron deficient
Ans: (A)
31. Amphoteric oxide among the following
(A) SnO_{2}
(B) BeO
(C) CO_{2}
(D) $\mathrm{Ag}_{2} \mathrm{O}$

Sol: Both SnO_{2} and BeO amphoteric
Ans: (A) and (B)
32. Which property of CO_{2} makes it biologically and geo-chemically important?
(A) Its high compressibility
(B) Its acidic nature
(C) Its colourless and odourless nature
(D) Its low solubility in water

Sol: Low solubility of CO_{2} in water
Ans: (D)
33. The IUPAC name for

(A) 4- oxopentanoic acid
(B) 1-hydroxy pentance-1, 4-dione
(C) 1,4-dioxopentanol
(D) 1-carboxybutan-3-one

Sol: 4- Oxopentanoic acid
Ans: (A)
34. 1 mole of HI is heated in a closed container of capacity of $2 L$. At equilibrium half a mole of HI is dissociated. The equilibrium constant of the reaction is
(A) 0.35
(B) 1
(C) 0.5
(D) 0.25

Sol: $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
1 mole - -
$\frac{1}{2}$ mole $\quad \frac{1}{2}$ mole $\quad \frac{1}{2}$ mole
$\therefore K_{c}=\frac{\frac{1}{2 \times 2} \times \frac{1}{2 \times 2}}{\left[\frac{1}{2 \times 2}\right]^{2}}=1$
Ans: (B)
35. Which among the following has higest pH ?
(A) 0.1 M NaOH
(B) 1 MHCI
(C) 1 M NaOH
(D) $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Sol: $\left[\mathrm{OH}^{-}\right]=1 \quad \therefore P O H=-\log (1)=0$
$\therefore p H=14-0=14$
Ans: (C)
36. How many number of atoms are there in a cube based unit cell, having one atom on each corner and 2 atom on each body diagonal of cube?
(A) 9
(B) 8
(C) 6
(D) 4

Sol: The contribution from corner particle $=8 \times \frac{1}{8}=1$
The contribution from body diagonal $2 \times 4=8$
Total number of particles $=1+8=9$
Ans: (A)
37. Which of the following is NOT true about the amorphous solids?
(A) They are anisotropic nature.
(B) On heating they may become crystalline at certain temperature.
(C) They may become crystalline on keeping for long time.
(D) Amorphous solids can be moulded by heating.

Sol: Amorphous solids are isotropic in nature
Ans: (A)
38. Identify A and B in the reaction

(A) $\mathrm{A}: \mathrm{CH}_{3}-\underset{\mid}{\mathrm{CH}}-\mathrm{CH}_{3} ; \mathrm{B}: \mathrm{CH}_{3}-\underset{\mid}{\mathrm{CH}}-\mathrm{CH}_{3}$
(B) $\mathrm{A}: \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br} ; \mathrm{B}: \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$
(C) $\mathrm{A}: \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br} ; \mathrm{B}: \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}$
(D) $\mathrm{A}: \mathrm{CH}_{3}-\underset{\mid}{\mathrm{CH}}-\mathrm{CH}_{3} ; \mathrm{B}: \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$

Sol:

Ans: (C)
39. Vacant space in body centered cubic lattice unit cell is about
(A) 46\%
(B) 32%
(C) 10%
(D) 23%

Sol: Vacant space in bcc lattice : 32%
Ans: (B)
40. The rise in boiling point of a solution containing 1.8 g of glucose in 100 g of solvent is $0.1^{\circ} \mathrm{C}$. The molal elevation constant of the liquid is
(A) $10 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$
(B) $0.1 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$
(C) $1 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$
(D) $2 \mathrm{Kkg} / \mathrm{mol}$

Sol: $\Delta T_{f}=\frac{1000 \times k_{f} \times w_{2}}{w_{1} \times M_{2}}$
$0.1=\frac{1000 \times k_{f} \times 1.8}{100 \times 180}$ or $k_{f}=1 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$
Ans: (C)
41. If 3 g of glucose (molar mass $=180 \mathrm{~g}$) is dissolved in 60 g of water at $15^{\circ} \mathrm{C}$, the osmotic pressure of the solution will be
(A) 5.57 atm
(B) 0.34 atm
(C) 0.65 atm
(D) 6.57 atm

Sol: $\pi=\frac{w_{2} R T}{M V}=\frac{3 \times 0.0821 \times 288}{180 \times 60 / 100}=6.57 \mathrm{~atm}$
Ans: (D)
42. Which of the following colligative properties can provide molar mass of proteins, polymers and colloids with greater precision?
(A) Osmotic pressure
(B) Relative lowering of vapour pressure
(C) Elevation in boiling point
(D) Depression in freezing point

Sol: Osmotic pressure
Ans: (A)
43. In Fuel cells \qquad are used as catalysts
(A) Lead - Manganese
(B) Platinum - Palladium
(C) Nickel - Cadmium
(D) Zinc - Mercury

Sol: Platinum - Pallidium
Ans: (B)
44. The molar conductivity is maximum for the solution of concentration
(A) 0.001 M
(B) 0.004 M
(C) 0.002 M
(D) 0.005 M

Sol: Molar conductivity increases with dilution.
$\therefore 0.001 \mathrm{M}$

Ans: (A)
45. Alkali haildes do not show dislocation defect because
(A) There is large difference in size of cation and anions.
(B) Cations and anions have low co-ordination number.
(C) Anions cannot be accommodated in vacant spaces.
(D) Cations and anions have almost equal size.

Sol: They are not found in alkali metal halides as the alkali metal ions cannot fit into the interstitial sites of all the options given option (D) is correct.

Ans: (D)
46. Solubility of a gas in a liquid increases with
(A) decrease of P and decrease of T
(B) increase of P and increase of T
(C) decrease of P and increase of T
(D) increase of P and decrease of T

Sol: Solubility of a gas in a liquid increases with increase in pressure and decrease in temperature.
Ans: (D)
47. For $\mathrm{n}^{\text {th }}$ order of reaction, Half-life period is directly proportional to
(A) a^{1-n}
(B) $\frac{1}{a^{n-1}}$
(C) $\frac{1}{a^{1-n}}$
(D) a^{n-1}

Sol: $t_{\frac{1}{2}} \propto \frac{1}{a^{n-1}}$
Ans: (B)
48. half-life of a reaction is found to be inversely proportional to the fifth power of its initial concentration, the order of reaction is
(A) 6
(B) 3
(C) 4
(D) 5

Sol: $t_{\frac{1}{2}} \alpha \frac{1}{a^{n-1}}$
$\therefore n=6$
Ans: (A)
49. A first order reaction is half completed in 45 min . How long does it need 99.9% of the reaction to be completed?
(A) 20 Hours
(B) 5 Hours
(C) 7.5 Hours
(D) 10 Hours

Sol: $t_{99.9}=10 \times \frac{t_{1}}{2}$
$=10 \times 45=450$ or 7.5 hr
Ans: (C)
50. The rate of the reaction:
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is given by the equation,
Rate $=K=K\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right][\mathrm{NaOH}]$. If concentration is expressed in mol L^{-1}, the unit of K is
(A) s^{-1}
(B) $\mathrm{mol}^{-2} L^{2} s^{-1}$
(C) $\mathrm{mol} L^{-1} s^{-1}$
(D) $L \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$

Sol: If is a second order reaction
\therefore unit of rate constant is $L \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
Ans: (D)
51. Colloidal solution commonly used in the treatment of skin disease is
(A) Colloidal Antimony
(B) Colloidal Sulphur
(C) Colloidal Silver
(D) Colloidal Gold

Sol: Colloidal Sulphur
Ans: (B)
52. Specific conductance of $0.1 \mathrm{M} \mathrm{HNO}_{3}$ is $6.3 \times 10^{-2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$. The molar conductance the solution is
(A) $63.0 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(B) $630 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(C) $315 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(D) $6.300 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Sol: $\wedge_{m}=\frac{1000 \times K}{C}=\frac{1000 \times 6.3 \times 10^{-2}}{0.1}$
$=630 \mathrm{ohm}^{-1} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
Ans: (B)
53. For spontaneity of a cell, which is correct?
(A) $\Delta G=-v e$
(B) $\Delta G=0, \Delta E=0$
(C) $\Delta G=-v e, \Delta E=0$
(D) $\Delta G=+v e, \Delta E=+v e$

Sol: $\Delta G=-\mathrm{ve}$
Ans: (A)
54. Which noble gas has least tendency to form compounds?
(A) Kr
(B) He
(C) Ne
(D) $A r$

Sol: He cannot form any compounds because very high ionization enthalpy.
Ans: (B)
55. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ on heating liberates a gas. The same gas will be obtained by
(A) treating $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ with $\mathrm{H}_{2} \mathrm{O}$
(B) hearing $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(C) heating $\mathrm{NH}_{4} \mathrm{NO}_{2}$
(D) treating $\mathrm{H}_{2} \mathrm{O}_{2}$ with NaNO_{2}

Sol: $\left(\mathrm{NH}_{4}\right) \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{~N}_{2} \uparrow+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NH}_{4} \mathrm{NO}_{2} \longrightarrow \mathrm{~N}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}$
Ans: (C)
56. The strong reducing property of hypophosphorous acid is due to
(A) presence of phosphorus in its highest oxidation state
(B) its concentration
(C) the positive valence of phosphorus
(D) two $P-H$ bonds

Sol:
Two $P-H$ bonds.
Hypo phosphorus compounds

Ans: (D)
57. A transition metal exists in its highest oxidation state. It is expected to behave as
(A) a reducing agent
(B) a chelating agent
(C) a central metal in a co-ordination compound
(D) an oxidation agent

Sol: A transition metal in its highest oxidation state behaves like a good oxidizing agent(If undergoes reduction easily).

Ans: (D)
58. What will be the value of x in $F e^{x+}$, if the magnetic moment $\mu=\sqrt{24} B M$?
(A) +1
(B) +2
(C) +3
(D) 0

Sol: $\mu=\sqrt{n(n+2)}$
When $n=4$
$\mu=\sqrt{4(4+2)}=\sqrt{24}$
There should be 4 unpaired electrons
\therefore ion is $\mathrm{Fe}^{2+}\left(3 d^{6}\right.$ configuration $)$
Ans: (B)
59. Which can absorb larger volume of hydrogen gas?
(A) Colloidal $\mathrm{Fe}(\mathrm{OH})_{3}$
(B) Finely divided nickel
(C) Colloidal solution of palladium
(D) Finely divided platinum

Sol: Hydrogen gas is best absorbed by colloidal solution of palladium.
Ans: (C)
60. The property of halogens which is not correctly matched is
(A) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ (electron gain enthalpy)
(B) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ (ionization enthalpy)
(C) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>I$ (electronegativity)
(D) $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$ (density)

Sol: $\mathrm{Cl}>\mathrm{F}>\mathrm{Br}>\mathrm{I}$
Ans: (A)

Key Answers:

1. B	2. D	3. B	4. C	5. D	6. C	7. D	8. B	9. B	10. B
11. D	12. D	13. C	14. A	15. D	16. C	17. C	18. B	19. A	20. A
21. D	22. C	23. D	24. A	25. D	26. B	27. B	28. B	29. C	30. A
31. A, B	32. D	33. A	34. B	35. C	36. A	37. A	38. C	39. B	40. C
41. D	42. A	43. B	44. A	45. D	46. D	47. B	48. A	49. C	50. D
51. B	52. B	53. A	54. B	55. C	56. D	57. D	58. B	59. C	60. A

