KCET Board Exam - 2022

Subject: Chemistry

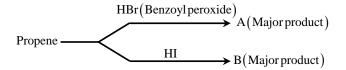
CODE:

- 1. The correct IUPAC name of cis- platin is
 - (A) dichloride diammine platinum
- (B) diammine dichloride platinum (II)
- (C) diammine dichloride platinum (IV)
- (D) diammine dichloride platinum (0)
- 2. Crystal Field Splitting Energy (CFSE) for $\left[CoCl_6\right]^{4-}$ is $18000\,\mathrm{cm}^{-1}$. The Crystal Field splitting Energy (CFSE) for $\left[CoCl_4\right]^{2-}$ will be
 - (A) $10,000\,\mathrm{cm}^{-1}$
- (B) $18000 \,\mathrm{cm}^{-1}$
- $(C) 16000 \,\mathrm{cm}^{-1}$
- (D) $8000 \,\mathrm{cm}^{-1}$
- 3. The complex hexammineplatinum (IV) chloride will give _____ number of ions on ionization.
 - (A) 2
- (B) 5

- (C) 4
- (D) 3
- 4. In the following pairs of halogen compounds, which compound undergoes faster $S_N 1$ reaction?
 - $(i) \qquad \qquad CI \qquad \qquad CI$
 - $(A) \qquad \begin{array}{c} CI \\ \\ CI \end{array} \qquad (ii) \\ \\ CI \end{array}$
 - (B) CI (ii) CI CI
 - (C) CI (ii) CI (CI
 - $\text{(D)} \qquad \qquad \text{CI} \qquad \qquad \text{(ii)} \\ \qquad \qquad \text{H}_3\text{C} \qquad \qquad \text{CI}$
- 5. The only Lanthanoid which is radioactive
 - (A) Praseodymium
- (B) Lanthanum
- (C) Cerium
- (D) Promethium
- 6. All Cu(II) halides are known, except the iodide, the reason for it is that
 - (A) Cu^{+2} ion has smaller size
 - (B) Iodide is bulky ion
 - (C) Cu^{+2} oxidises iodide to iodine
 - (D) Cu^{+2} has much more negative hydration enthalpy

7.	An organic compound with	h molecular formula <i>C</i>	C_7H_8O dissolves in NaO	H and gives a characteristic		
	colour with $FeCl_3$. On treatment with bromine, it gives a tribromo derivative $C_7H_5OBr_3$. The compound					
	is					
	(A) p- Cresol	(B) Benzyl alcohol	(C) o- Cresol	(D) m- Cresol		
8.	In Kolbes reaction the react	ing substances are				
	(A) Phenol and CHCl₃(C) Phenol and CCl₄		(B) Sodium phenate and CO_2			
			(d) Sodium phenate and CCI.			
9.	The major product obtained	d when ethanol is heated	d with excess of conc. H_2SO_4 at 443K is			
	(A) methane	(B) ethene	(C) ethyne	(D) ethane		
10.	Among the following, the p	llowing, the products formed by the reaction of anisole with HI are:				
	(A) Phenol + Methane		(B) Phenol + Iodomethane			
	(C) Sodium phenate + Methanol (D) Benzene + Me		(D) Benzene + Methane	ol		
11.	Which one of the following	Chlorohydrocarbon rea	ndily undergoes solvolysi	is?		
	(A) \sim	:H ₂ Cl	(B) $CH_2 = CHCl$			
		_				
	(C) CI		(D) CH_2C	CI		
12.	Identify the products <i>A</i> an	d <i>B</i> in the reactions:				
	$R - X + A g CN \rightarrow A + A g X$					
	$R - X + KCN \rightarrow B + KX$					
	(A) $A = RNC; B = RNC$		(B) $A = R - CN$; $B = RCR$	V		
	(C) $A = RCN$; $B = RCN$		(D) $A = RNC; B = RCN$			
13.	Reaction by which benzald	ehyde cannot be prepare	ed is			
	(A) Benzoyl chloride +	$H_2 \xrightarrow{N-BaSO_4} $	(B) Benzene+C	$CO + HCl \xrightarrow{\text{anhydrous}AlCl_3} \rightarrow$		
	(C) Benzoic acid — Zn-H	$I \text{ g and } con.HCl \longrightarrow$	(D) Toluene —	$\xrightarrow{(i) CrO_2Cl_2 \text{ in } CS_2} \xrightarrow{(ii) H_3O^+}$		
14.	The test to differentiate bet	ween pentan –2 – one ar	nd pentan –1 – one is			
	(A) Iodoform test	(B) Baeyer's test	(C) Benedict's test	(D) Fehling's test		
15.	In Carbyl;amine test for pri	mary amines the resulti	ng foul smelling product	is		
	(A) COCl ₂	(B) CH_3NCl_2	(C) CH ₃ CN	(D) CH_3NC		
16.	Ethanoic acid undergoes H	ell-Volhard Zelinsky rea	action but Methanoic acid	d does not, because of		

(A) higher acidic strength of ethanoic acid than methanoic acid


(B) presence of $\alpha - H$ atom in ethanoic acid (C) presence of $\alpha - H$ atom in ethanoic acid (D) absence of $\alpha - H$ atom in ethanoic acid

17.	The general name of the compound formed by the reaction between aldehyde and alcohol is								
	(A) Acetate	(B) Ester	(C) Acetal	(D) Glycol					
18.	Which institute has appro	ved the emergency u	se of 2-deoxy-D-Glucos	se as additive therapy for COVID -					
	19 patients?								
	(A) Drug Controller C	General of India	(B) Indian Counc	il of Medical Research					
	(C) World Health Org	anisation	(D) Ministry of H	ealth and Family Welfare					
19.	A Nucleic acid, whether I	Nucleic acid, whether DNA or RNA gives on complete hydrolysis, two purine bases, two pyrin							
bases, a pentose sugar and phosphoric acid. Nucleotides which are intermediate pro-									
	hydrolysis contain								
	(A) Purine or pyrimidine base, a pentose sugar and ortho-phosphoric acid								
	(B) purine or pyrimidine base and pentose sugar.								
	(C) a purine base, pentose sugar and ortho-phosphoric acid								
	(D) purine or pyrimid	ine base and ortho-pl	nosphoric acid						
20.	A secondary amine is								
	(A) a compound in w	hich 2 of the hydroge	n of NH_3 have been rep	laced by organic groups					
	(B) an organic compo	and with two NH_2 gr	oup						
	(C) a compound with	two carbon atom and	an <i>NH</i> ₂ group						
	(D) a compound with	(D) a compound with an NH_2 group on the carbon atom in number 2 position							
21.	Which of the following is	correctly matched?							
	(A) Polyster – tetraflu	oroethene	(B) Nylon - acryl	onitrile					
	(C) Teflon - copralact	um	(D) Bakelite - Nov	volac					
22.	Elements X, Y and Z h	ave atomic numbers	s 19, 37 and 55 resp	ectively. Which of the following					
	statements is true about them?								
	(A) Y would have the	highest ionization po	tential						
	(B) Their ionisation po	otential would increas	se with increasing atom	ic number.					
	(C) Y would have an i	onisation potential be	etween those of X and Z	<u>.</u>					
	(D) Z would have the	highest ionisation po	tential.						
23.	In oxygen and carbon mol	lecule the bonding is							
	(A) $O_2: 0\sigma, 2\pi; C_2: 2\sigma, 0\pi$		(B) $O_2:1\sigma,1\pi;C_2$	(B) $O_2:1\sigma,1\pi;C_2:1\sigma,1\pi$					
	(C) $O_2: 2\sigma, 0\pi; C_2: 0\sigma, 2\pi$		(D) $O_2:1\sigma,1\pi;C_2$	(D) $O_2:1\sigma,1\pi;C_2:0\sigma,2\pi$					
24.	Which is most VISCOUS?								
	(A) Glycerol	(B) Methanol	(C) Ethanol	(D) Ethylene glycol					
25.	The volume of 2.8 g of Co	O at 27 $^{\circ}C$ and 0.821 a	atm . pressure is $(R = 0.0)$	$08210 \text{ lit.atm.} K^{-1} mol^{-1}$					
	(A) 30 litres	(B) 0.3 litres	(C) 1.5 litres	(D) 3 litres					
26.	The work done when 2 m	oles of an ideal gas e	expands reversibly and	isothermally from a volume of 1L					
	to $10L$ at $300 K$ is $(R = 0.0083 kJ K mol^{-1})$								
	(A) 58.5 kJ	(B) 11.5 kJ	(C) 5.8 kJ	(D) 0.115 kJ					
	nalzcha Hauca			<u> </u>					

Deeksha House

27.	An aqueous solution of alcohol contains $18\ g$ of water and $414\ g$ of ethyl alcohol. The mole fraction of					
	water is	(D)	(5)	(D)		
	(A) 0.9	(B) 0.1	(C) 0.4	(D) 0.7		
28.	If wavelength of photon is $2.2 \times 10^{-11} m$ and $h = 6.6 \times 10^{-34} J$ s, then momentum of photon					
	(A) $6.89 \times 10^{+43} kg \ m s^{-1}$			(B) $3 \times 10^{-23} kg \ m s^{-1}$		
	(C) $3.33 \times 10^{-22} kg \ m s^{-1}$		(D) $1.452 \times 10^{-44} kg \ m s^{-1}$			
29.	In which of the followin	g compounds, an elemer	nt exhibits two different	exhibits two different oxidation states?		
	(A) N_3H	(B) NH_2CONH_2	(C) NH_4NO_3	(D) N_2H_4		
30.	Which of the following hydrides is electron deficient?					
	(A) B_2H_6	(B) <i>NaH</i>	(C) <i>CaH</i> ₂	(D) <i>CH</i> ₄		
31.	Amphoteric oxide amor	ng the following				
	(A) SnO_2	(B) <i>BeO</i>	(C) <i>CO</i> ₂	(D) Ag_2O		
32.	Which property of CO ₂ makes it biologically and geo-chemically important?					
	(A) Its high compres	ssibility	(B) Its acidic nature	(B) Its acidic nature		
	(C) Its colourless an	d odourless nature	(D) Its low solubili	(D) Its low solubility in water		
33.	The IUPAC name for					
	O CH ₃ —C—CH ₂ —CH ₂	О 5—С—О—Н				
	(A) 4– oxopentanoic acid		(B) 1-hvdroxy pe	(B) 1-hydroxy pentance -1, 4-dione		
	(C) 1,4 – dioxopentanol		. , , , , , , , , , , , , , , , , , , ,	(D) 1 – carboxybutan –3 – one		
34	· · · · · · · · · · · · · · · · · · ·					
01.	1 mole of HI is heated in a closed container of capacity of 2 <i>L</i> . At equilibrium half a mole of HI is dissociated. The equilibrium constant of the reaction is					
	(A) 0.35	(B) 1	(C) 0.5	(D) 0.25		
35.	Which among the follow	,	()			
	(A) 0.1 <i>M NaOH</i>	(B) 1 <i>M HCI</i>	(C) 1 M NaOH	(D) $1 M H_2 SO_4$		
36.	How many number of atoms are there in a cube based unit cell, having one atom on each corner and 2					
	atom on each body diagonal of cube?					
	(A) 9	(B) 8	(C) 6	(D) 4		
37.	Which of the following is <u>NOT</u> true about the amorphous solids?					
	(A) They are anisotropic nature.					
	(B) On heating they may become crystalline at certain temperature.					
	(C) They may become crystalline on keeping for long time.					
	(D) Amorphous solids can be moulded by heating.					

38. Identify A and B in the reaction

(A)
$$A: CH_3 - CH - CH_3$$
; $B: CH_3 - CH - CH_3$

(B)
$$A: CH_3 - CH_2 - CH_2 - Br; B: CH_3 - CH_2 - CH_2 - I$$

(C)
$$A: CH_3 - CH_2 - CH_2 - Br; B: CH_3 - CH - CH_3$$

(A)
$$A:CH_3-CH-CH_3$$
; $B:CH_3-CH-CH_3$ (B) $A:CH_3-CH_2-CH_2-Br$; $B:CH_3-CH_2-CH_2-I$ (C) $A:CH_3-CH_2-CH_2-Br$; $B:CH_3-CH-CH_3$ (D) $A:CH_3-CH-CH_3$; $B:CH_3-CH_2-CH_2-I$ Br

39. Vacant space in body centered cubic lattice unit cell is about

40. The rise in boiling point of a solution containing 1.8g of glucose in 100 g of solvent is 0.1 °C. The molal elevation constant of the liquid is

- (D) 2 K kg / mol
- 41. If 3g of glucose (molar mass = 180 g) is dissolved in 60 g of water at 15 °C, the osmotic pressure of the solution will be

- (D) 6.57 atm
- 42. Which of the following colligative properties can provide molar mass of proteins, polymers and colloids with greater precision?
 - (A) Osmotic pressure

(B) Relative lowering of vapour pressure

(C) Elevation in boiling point

(D) Depression in freezing point

43. In Fuel cells _____ are used as catalysts

(A) Lead - Manganese

(B) Platinum - Palladium

(C) Nickel - Cadmium

(D) Zinc - Mercury

- 44. The molar conductivity is maximum for the solution of concentration
 - (A) 0.001 M
- (B) 0.004 M
- (C) 0.002 M
- (D) 0.005 M

- 45. Alkali haildes do not show dislocation defect because
 - (A) There is large difference in size of cation and anions.
 - (B) Cations and anions have low co-ordination number.
 - (C) Anions cannot be accommodated in vacant spaces.
 - (D) Cations and anions have almost equal size.
- 46. Solubility of a gas in a liquid increases with
 - (A) decrease of P and decrease of T
- (B) increase of P and increase of T
- (C) decrease of P and increase of T
- (D) increase of P and decrease of T
- 47. For nth order of reaction, Half-life period is directly proportional to

(A)
$$a^{1-n}$$

(B)
$$\frac{1}{a^{n-1}}$$

(C)
$$\frac{1}{a^{1-n}}$$

(D)
$$a^{n-1}$$

 (A) 6 (B) 3 (C) 4 (D) 5 49. A first order reaction is half completed in 45 min. How long does it need 99.9% of the reaction completed? (A) 20 Hours (B) 5 Hours (C) 7.5 Hours (D) 10 Hours 50. The rate of the reaction: CH₃COOC₂H₅+NaOH → CH₅COONa+C₂H₅OH is given by the equation, Rate = K = K[CH₃COOC₂H₅][NaOH]. If concentration is expressed in mol L⁻¹, the unit of K is (A) s⁻¹ (B) mol⁻²L²s⁻¹ (C) mol L⁻¹s⁻¹ (D) Lmol⁻¹s⁻¹ 51. Colloidal solution commonly used in the treatment of skin disease is (A) Colloidal Silver (D) Colloidal Sulphur (C) Colloidal Silver (D) Colloidal Gold 52. Specific conductance of 0.1 M HNO₃ is 6.3×10⁻² ohm⁻¹ cm⁻¹. The molar conductance the solution in (A) 63.0 ohm⁻¹ cm² mol⁻¹ (B) 630 ohm⁻¹ cm² mol⁻¹ (C) 315 ohm⁻¹ cm² mol⁻¹ (D) 6.300 ohm⁻¹ cm² mol⁻¹ 53. For spontaneity of a cell, which is correct? (A) ΔG = -νe (B) ΔG = 0, ΔE = 0 (C) ΔG = -νe, ΔE = 0 (D) ΔG = +νe, ΔE = +νe 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH₄)₂ C₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating M₈₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P - H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as (A) a reducing agent 	ntration,						
completed? (A) 20 Hours (B) 5 Hours (C) 7.5 Hours (D) 10 Hours 50. The rate of the reaction: $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH \text{ is given by the equation,}$ $Rate = K = K[CH_3COOC_2H_3][NaOH]. \text{ If concentration is expressed in } mol L^{-1}, \text{ the unit of } K \text{ is }$ (A) s^{-1} (B) $mol^{-2}L^2s^{-1}$ (C) $mol L^{-1}s^{-1}$ (D) $Lmol^{-1}s^{-1}$ 51. Colloidal solution commonly used in the treatment of skin disease is (A) Colloidal Antimony (B) Colloidal Sulphur (C) Colloidal Silver (D) Colloidal Gold 52. Specific conductance of $0.1 M \ HNO_3$ is $6.3 \times 10^{-2} \ \text{ohm}^{-1} \ \text{cm}^{-1}$. The molar conductance the solution is (A) $63.0 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (B) $630 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (C) $315 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (D) $6.300 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ 53. For spontaneity of a cell, which is correct? (A) $\Lambda G = -ve$ (B) $\Delta G = 0.\Delta E = 0$ (C) $\Delta G = -ve.\Delta E = 0$ (D) $\Delta G = +ve.\Delta E = +ve$ 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. $(NH_4)_2 Cr_2 O_7$ on heating liberates a gas. The same gas will be obtained by (A) treating $Mg_3 N_2$ with $H_2 O$ (B) hearing $NH_4 NO_3$ (C) heating $NH_4 NO_2$ (D) treating $H_2 O_2$ with $NuNO_2$ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two $P - H$ bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as							
 50. The rate of the reaction:	on to be						
CH ₃ COOC ₂ H ₅ +NaOH \rightarrow CH ₃ COONa+C ₂ H ₅ OH is given by the equation, Rate = K =K[CH ₃ COOC ₂ H ₅][NaOH]. If concentration is expressed in mol L^{-1} , the unit of K is (A) s^{-1} (B) mol ⁻² L^2 s^{-1} (C) mol $L^{-1}s^{-1}$ (D) L mol ⁻¹ s^{-1} 51. Colloidal solution commonly used in the treatment of skin disease is (A) Colloidal Antimony (B) Colloidal Sulphur (C) Colloidal Silver (D) Colloidal Gold 52. Specific conductance of $0.1 M \ HNO_3$ is $6.3 \times 10^{-2} \ \text{ohm}^{-1} \ \text{cm}^{-1}$. The molar conductance the solution is (A) $63.0 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (B) $630 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (C) $315 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (D) $6.300 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ 53. For spontaneity of a cell, which is correct? (A) $\Delta G = -ve$ (B) $\Delta G = 0.\Delta E = 0$ (C) $\Delta G = -ve.\Delta E = 0$ (D) $\Delta G = +ve.\Delta E = +ve$ 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. $(NH_4)_2 Cr_2 O_7$ on heating liberates a gas. The same gas will be obtained by (A) treating Mg_3N_2 with H_2O (B) hearing NH_4NO_3 (C) heating NH_4NO_3 (C) heating NH_4NO_2 (D) treating H_2O_2 with $NaNO_2$ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two $P - H$ bonds							
Rate $= K = K[CH_3COOC_2H_5][NaOH]$. If concentration is expressed in $mol L^{-1}$, the unit of K is (A) s^{-1} (B) $mol^{-2} L^2 s^{-1}$ (C) $mol L^{-1} s^{-1}$ (D) $Lmol^{-1} s^{-1}$ 51. Colloidal solution commonly used in the treatment of skin disease is (A) Colloidal Antimony (B) Colloidal Sulphur (C) Colloidal Silver (D) Colloidal Gold 52. Specific conductance of $0.1 M \ HNO_3$ is $6.3 \times 10^{-2} \ \text{ohm}^{-1} \ \text{cm}^{-1}$. The molar conductance the solution is (A) $63.0 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (B) $630 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (C) $315 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (D) $6.300 \ \text{ohm}^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ 33. For spontaneity of a cell, which is correct? (A) $\Delta G = -ve$ (B) $\Delta G = 0.\Delta E = 0$ (C) $\Delta G = -ve$, $\Delta E = 0$ (D) $\Delta G = +ve$, $\Delta E = +ve$ 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. $(NH_4)_2 Cr_2 O_7$ on heating liberates a gas. The same gas will be obtained by (A) treating Mg_3N_2 with H_2O (B) hearing NH_4NO_3 (C) heating NH_4NO_2 (D) treating H_2O_2 with $NaNO_2$ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two $P - H$ bonds							
(A) s^{-1} (B) $mol^{-2}L^2s^{-1}$ (C) $mol L^{-1}s^{-1}$ (D) $Lmol^{-1}s^{-1}$ 51. Colloidal solution commonly used in the treatment of skin disease is (A) Colloidal Antimony (B) Colloidal Sulphur (C) Colloidal Silver (D) Colloidal Gold 52. Specific conductance of 0.1 M HNO ₃ is 6.3×10 ⁻² ohm ⁻¹ cm ⁻¹ . The molar conductance the solution is (A) 63.0 ohm ⁻¹ cm ² mol ⁻¹ (B) 630 ohm ⁻¹ cm ² mol ⁻¹ (C) 315ohm ⁻¹ cm ² mol ⁻¹ (D) 6.300 ohm ⁻¹ cm ² mol ⁻¹ 53. For spontaneity of a cell, which is correct? (A) ΔG = -νe (B) ΔG = 0,ΔE = 0 (C) ΔG = -νe,ΔE = 0 (D) ΔG = +νe, ΔE = +νe 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH ₄) ₂ Cr ₂ O ₇ on heating liberates a gas. The same gas will be obtained by (A) treating M ₈ ₃ N ₂ with H ₂ O (B) hearing NH ₄ NO ₃ (C) heating NH ₄ NO ₂ (D) treating H ₂ O ₂ with NaNO ₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as	$CH_3COOC_2H_5+NaOH \rightarrow CH_3COONa+C_2H_5OH$ is given by the equation,						
 51. Colloidal solution commonly used in the treatment of skin disease is (A) Colloidal Antimony (B) Colloidal Sulphur (C) Colloidal Silver (D) Colloidal Gold 52. Specific conductance of 0.1 M HNO3 is 6.3×10⁻² ohm⁻¹ cm⁻¹. The molar conductance the solution is (A) 63.0 ohm⁻¹ cm² mol⁻¹ (B) 630 ohm⁻¹ cm² mol⁻¹ (C) 315ohm⁻¹ cm² mol⁻¹ (D) 6.300 ohm⁻¹ cm² mol⁻¹ 53. For spontaneity of a cell, which is correct? (A) ΔG = -ve (B) ΔG = 0,ΔE = 0 (C) ΔG = -ve,ΔE = 0 (D) ΔG = +ve, ΔE = +ve 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH₄)₂C₇₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 	Rate = $K = K[CH_3COOC_2H_5][NaOH]$. If concentration is expressed in $mol L^{-1}$, the unit of K is						
 (A) Colloidal Antimony (B) Colloidal Sulphur (C) Colloidal Silver (D) Colloidal Gold 52. Specific conductance of 0.1 M HNO₃ is 6.3×10⁻² ohm⁻¹ cm⁻¹. The molar conductance the solution is (A) 63.0 ohm⁻¹ cm² mol⁻¹ (B) 630 ohm⁻¹ cm² mol⁻¹ (C) 315ohm⁻¹ cm² mol⁻¹ (D) 6.300 ohm⁻¹ cm² mol⁻¹ 53. For spontaneity of a cell, which is correct? (A) ΔG = -ve (B) ΔG = 0,ΔE = 0 (C) ΔG = -ve, ΔE = 0 (D) ΔG = +ve, ΔE = +ve 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH₄)₂ Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 							
 (C) Colloidal Silver (D) Colloidal Gold 52. Specific conductance of 0.1 <i>M HNO</i>₃ is 6.3×10⁻² ohm⁻¹ cm⁻¹. The molar conductance the solution in (A) 63.0 ohm⁻¹ cm² mol⁻¹ (B) 630 ohm⁻¹ cm² mol⁻¹ (C) 315ohm⁻¹ cm² mol⁻¹ (D) 6.300 ohm⁻¹ cm² mol⁻¹ 53. For spontaneity of a cell, which is correct? (A) ΔG = -ve (B) ΔG = 0, ΔE = 0 (C) ΔG = -ve, ΔE = 0 (D) ΔG = +ve, ΔE = +ve 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH₄)₂ Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 							
 52. Specific conductance of 0.1 <i>M HNO</i>₃ is 6.3×10⁻² ohm⁻¹ cm⁻¹. The molar conductance the solution in (A) 63.0 ohm⁻¹ cm² mol⁻¹ (B) 630 ohm⁻¹ cm² mol⁻¹ 53. For spontaneity of a cell, which is correct? (A) Δ<i>G</i> = -<i>ve</i> (B) Δ<i>G</i> = 0,Δ<i>E</i> = 0 (C) Δ<i>G</i> = -<i>ve</i>,Δ<i>E</i> = 0 (D) Δ<i>G</i> = +<i>ve</i>, Δ<i>E</i> = +<i>ve</i> 54. Which noble gas has least tendency to form compounds? (A) <i>Kr</i> (B) <i>He</i> (C) <i>Ne</i> (D) <i>Ar</i> 55. (<i>NH</i>₄)₂ <i>Cr</i>₂<i>O</i>₇ on heating liberates a gas. The same gas will be obtained by (A) treating <i>Mg</i>₃<i>N</i>₂ with <i>H</i>₂<i>O</i> (B) hearing <i>NH</i>₄<i>NO</i>₃ (C) heating <i>NH</i>₄<i>NO</i>₂ (D) treating <i>H</i>₂<i>O</i>₂ with <i>NaNO</i>₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two <i>P</i> – <i>H</i> bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 							
 (A) 63.0 ohm⁻¹ cm² mol⁻¹ (B) 630 ohm⁻¹ cm² mol⁻¹ (C) 315 ohm⁻¹ cm² mol⁻¹ (D) 6.300 ohm⁻¹ cm² mol⁻¹ 53. For spontaneity of a cell, which is correct? (A) ΔG = -ve (B) ΔG = 0, ΔE = 0 (C) ΔG = -ve, ΔE = 0 (D) ΔG = +ve, ΔE = +ve 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH₄)₂Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P - H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 							
 (C) 315ohm⁻¹ cm² mol⁻¹ (D) 6.300 ohm⁻¹ cm² mol⁻¹ 53. For spontaneity of a cell, which is correct? (A) ΔG = -ve (B) ΔG = 0,ΔE = 0 (C) ΔG = -ve,ΔE = 0 (D) ΔG = +ve, ΔE = +ve 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH₄)₂ Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 	n is						
 53. For spontaneity of a cell, which is correct? (A) ΔG = -ve (B) ΔG = 0, ΔE = 0 (C) ΔG = -ve, ΔE = 0 (D) ΔG = +ve, ΔE = +ve 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH₄)₂ Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 	(B) $630 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$						
 (A) ΔG = -ve (B) ΔG = 0, ΔE = 0 (C) ΔG = -ve, ΔE = 0 (D) ΔG = +ve, ΔE = +ve 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar (NH₄)₂Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 	(D) $6.300 \text{ ohm}^{-1} \text{cm}^2 \text{ mol}^{-1}$						
 54. Which noble gas has least tendency to form compounds? (A) Kr (B) He (C) Ne (D) Ar 55. (NH₄)₂Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 							
 (A) Kr (B) He (C) Ne (D) Ar (NH₄)₂ Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds A transition metal exists in its highest oxidation state. It is expected to behave as 	ve						
 55. (NH₄)₂Cr₂O₇ on heating liberates a gas. The same gas will be obtained by (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 							
 (A) treating Mg₃N₂ with H₂O (B) hearing NH₄NO₃ (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 							
 (C) heating NH₄NO₂ (D) treating H₂O₂ with NaNO₂ 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 	$(NH_4)_2 Cr_2 O_7$ on heating liberates a gas. The same gas will be obtained by						
 56. The strong reducing property of hypophosphorous acid is due to (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 							
 (A) presence of phosphorus in its highest oxidation state (B) its concentration (C) the positive valence of phosphorus (D) two <i>P-H</i> bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 	(D) treating H_2O_2 with $NaNO_2$						
 (B) its concentration (C) the positive valence of phosphorus (D) two <i>P-H</i> bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 	The strong reducing property of hypophosphorous acid is due to						
 (C) the positive valence of phosphorus (D) two P-H bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as 	(A) presence of phosphorus in its highest oxidation state						
(D) two <i>P</i> − <i>H</i> bonds 57. A transition metal exists in its highest oxidation state. It is expected to behave as	(B) its concentration						
57. A transition metal exists in its highest oxidation state. It is expected to behave as	(C) the positive valence of phosphorus						
· · · · · · · · · · · · · · · · · · ·	(D) two $P-H$ bonds						
(A) a reducing agent	A transition metal exists in its highest oxidation state. It is expected to behave as						
(B) a chelating agent							
(C) a central metal in a co-ordination compound							
(D) an oxidation agent							
What will be the value of x in Fe^{x+} , if the magnetic moment $\mu = \sqrt{24} BM$?							
(A) $+1$ (B) $+2$ (C) $+3$ (D) 0							

Deeksha House 6

- 59. Which can absorb larger volume of hydrogen gas?
 - (A) Colloidal $Fe(OH)_3$

- (B) Finely divided nickel
- (C) Colloidal solution of palladium
- (D) Finely divided platinum
- 60. The property of halogens which is not correctly matched is
 - (A) F > Cl > Br > I (electron gain enthalpy)
- (B) F > Cl > Br > I (ionization enthalpy)
- (C) F > Cl > Br > I (electronegativity)
- (D) I > Br > Cl > F (density)

Deeksha House