KCET Board Exam – 2021

Subject: Chemistry

CODE: ____

- 1. In Chrysoberyl, a compound containing Beryllium, Aluminium and oxygen, oxide ions form cubic close packed structure. Aluminium ions occupy 1/4 th of tetrahedral voids and Beryllium ions occupy 1/4 th of octahedral voids. The formula of the compound is
 - (a) $BeAlO_4$ (b) $BeAl_2O_4$
 - (c) Be_2AlO_2 (d) $BeAlO_2$

Sol: Number of oxidation=4 (as it is forming CCP structure)

Number of tetrahedral voids 2×4

$$\therefore$$
 Number of Al^{3+} ions $=\frac{1}{4} \times 2 \times 4 = 2$

Number of octahedral voids = 4

: Number of Beryllium ions =
$$\frac{1}{4} \times 4 = 1$$

Ratio of Be: Al: O = 1:2:4

 \therefore Formula is *BeAl*₂*O*₄

Ans: (b)

- 2. The correct statement regarding defects in solids is
 - (a) Frenkel defect is a vacancy defect
 - (b) Schottky defect is a dislocation defect
 - (c) Trapping of an electron in the lattices leads to the formation of F-centre
 - (d) Schottky defect has no effect on density.

Sol: Trapping of an electron in the lattices leads to formation of f – centres.

Ans: (c)

- 3. A metal crystallises in BCC lattice with unit cell edge length of 300 pm and density 6.15 g cm⁻³. The molar mass of the metal is
 - (a) 50 g mol^{-1} (b) 60 g mol^{-1} (c) 40 g mol^{-1} (d) 70 g mol^{-1}

Sol:
$$d = \frac{2 M}{a^3 N a} = \frac{2 \times M}{\left(300 \times 10^{-10}\right)^3 \times 6.022 \times 10^{23}} = 6.15$$

 $\therefore M = 49.99 \approx 50$

Ans: (a)

- 4. Henry's law constant for the solubility of N_2 gas in water at 298 K is 1.0×10^5 atm. The mole fraction of N_2 in air is 0.8. The number of moles of N_2 from air dissolved in 10 moles of water at 298 K and 5 atm pressure is
 - (a) 4.0×10^{-4} (b) 4.0×10^{-5}
 - (c) 5.0×10^{-4} (d) 4.0×10^{-6}

Sol: Partial pressure of $N_2(P_{N_2})$ = mole fraction of $N_2 \times$ total pressure

= $0.8 \times 5 = 4$ atm According to Henry's law $X_{N_2}K_H = P_{N_2}$ $X_{N_2} = \frac{4}{1 \times 10^5} = 4 \times 10^{-5} = \frac{n_{N_2}}{n_{N_2} + n_{H_2O}}$ $n_{N_2} = 4 \times 10^{-5} \times 10 = 4 \times 10^{-4}$ Ans: (a)

5. A pure compound contains 2.4 g of C, 1.2×10^{23} atoms of H, 0.2 moles of oxygen atoms. Its empirical formula is

(a) C_2HO	(b) $C_2 H_2 O_2$		
(c) <i>CH</i> ₂ <i>O</i>	(d) CHO		

Sol: No. of moles of $C = \frac{2.4}{12} = 0.2$ moles simple ratio No. of moles of $H = \frac{1.2 \times 10^{23}}{6 \times 10^{23}} = 0.2$ moles simple ratio No. of moles of O = 0.2 moles simple ratio

$$EF = CHO$$

Ans: (d)

- 6. Choose the correct statement
 - (a) K_H value is same for a gas in any solvent
 - (b) Higher the K_H value more the solubility of gas
 - (c) K_H value increases on increasing the temperature of the solution
 - (d) Easily liquefiable gases usually has lesser K_H values

Sol: K_H value increases on increasing the temperature of the solution and easily liquefiable gases usually has lesser K_H values

Ans: (c)

7. The K_H value (*K* bar) of Argon (I), Carbondioxide (II) formuldehyde (III) and methane (IV) are respectively 40.3,1.67,1.83×10⁻⁵ and 0.413 at 298 K. The increasing order of solubility of gas in liquid is

(a) $I < II < IV < III$	(c) III < IV < II < I
(c) $I < III < II < IV$	(d) $I < IV < II < III$
Sol: III < IV < II < I	

```
Ans: (b)
```

8. The vapour pressure of pure liquids A and B are 450 and 700 mm of *Hg* at 350 K respectively. If the total vapour pressure of the mixture is 600 mm of *Hg*, the composition of the mixture in the solution is

(a)
$$x_A = 0.4, x_B = 0.6$$
(b) $x_A = 0.6, x_B = 0.4$ (c) $x_A = 0.3, x_B = 0.7$ (d) $x_A = 0.7, x_B = 0.3$

Deeksha House

Sol:
$$P_{\text{total}} = P_A^\circ x_A + P_B^\circ x_B = P_A^\circ x_A + P_B^\circ (1 - x_A)$$

 $600 = 450x_A + 700(1 - x_A)$
 $600 = 450x_4 + 700 - 700x_A$
 $(700 - 450)x_A = 700 - 600$
 $250x_A = 100$
 $x_A = \frac{100}{250} = 0.4$
 $x_B = 0.6$

Ans: (a)

9. Consider the following electrodes

 $P = Zn^{2+} (0.0001M) / Zn \quad Q = Zn^{2+} (0.1M) / Zn$ $R = Zn^{2+} (0.01M) / Zn$ $S = Zn^{2+} (0.001M) / Zn$

 $E^{\circ}Zn/Zn^{2+} = -0.76V$ Electrode potentials of the above electrodes in volts are in the order

(a) P > S > R > Q(b) S > R > Q > P(c) Q > R > S > P(d) P > Q > R > S

Sol: Electrode potentials is directly proportional to concentration of Zn^2 ions.

Ans: (c)

10. The number of angular and radial nodes in 3p orbital respectively are

(a) 3, 1		(b) 1,1
(c) 2, 1		(d) 2, 3
^{3P} Sol: Angular nodes	<i>l</i> = 1	
Radial nodes	n - l - 1 = 3 - 1 - 1 = 1	
Ans: (b)		

11. The resistance of 0.01m KCl solution at 298 K is 1500 Ω. If the conductivity of 0.01m KCl solution at

298 K is $0.146 \times 10^{-3} S \text{ cm}^{-1}$. The cell constant of the conductivity cell in cm⁻¹ is

- (b) 0.291 (a) 0.219 (d) 0.194
- (c) 0.301

Sol:
$$K = \frac{\text{cell constant}}{R}$$

Cell constant = $K \times R = 0.146 \times 10^{-3} \times 1500$

 $= 0.146 \times 10^{-3} \times 1.5 \times 10^{3}$

= 0.219

Ans: (a)

12.
$$H_{2(g)} + 2AgCl \overleftrightarrow{2Ag(s)} + 2HCl_{(aq)}$$

 $E^\circ_{\rm cell}$ at $25^\circ C$ for the cell is $0.22\,V$. The equilibrium constant at $25^\circ C$ is

(a)
$$2.8 \times 10^7$$
 (b) 5.2×10^8 (c) 2.8×10^5 (d) 5.2×10^4
Sol: $E_{\text{cell}}^\circ = \frac{0.0591}{n} \log K_P$
 $0.22 = \frac{0.0591}{2} \log K_P$
 $\log K_P = \frac{0.22 \times 2}{0.0591} = 3.722 = 7.444 = 2.8 \times 10^7$
Ans: (a)

13. For a reaction $A + 2B \rightarrow$ Products, when concentration of *B* alone is increased half-life remains the same. If concentration of *A* alone is doubled, rate remains the same. The unit of rate constant for the reaction is

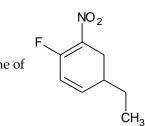
(a) S^{-1} (b) $L \mod^{-1} S^{-1}$ (c) $\mod L^{-1} S^{-1}$ (d) atm^{-1} Sol: Order w.r.t. to A = 0 Overall order = 1 Order w.r.t. to B = 1 \therefore Unit of rate constant = S^{-1}

Ans: (a)

14. The third ionisation enthalpy is highest in

(a) Alkali metals	(b) Alkaline earth metals
(c) Chalcogens	(d) Pnictogens

Sol: Third ionisation enthalpy (IE_3) is highest for alkaline Earth metal.


Ans: (b)

15. If the rate constant for a first order reaction is k, the time (t) required for the completion of 99% of the reaction is given by

(a)
$$t = \frac{4.606}{k}$$
 (b) $t = \frac{2.303}{k}$ (c) $t = \frac{0.693}{k}$ (d) $t = \frac{6.909}{k}$
Sol: $t = \frac{2.303}{K} \log \frac{100}{100 - 99}$
 $= \frac{2.303}{K} \log 100$ or $\frac{2.303 \times 2}{K} = \frac{4.606}{K}$
Ans: (a)

16. The rate of a gaseous reaction is given by the expression $k[A][B]^2$. If the volume of vessel is reduced to one life of the initial volume, the reaction rate as compared to original rate is

(a)
$$\frac{1}{16}$$
 (b) $\frac{1}{8}$ (c) 8 (d) 16
Sol: Rate = $k[A][B]^2 = k[2A][2B]^2 = k[A][B]^2 2 \times 4$
= $8k[A][B]^2$
Ans: (c)

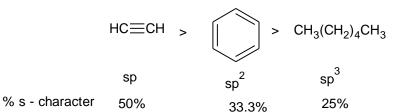
- 17. The correct IUPAC name of
 - (a) 4-Ethyl-1-Fluoro-2-nitrobenzene
 - (c) 3-Ethyl-6-Fluoronitrobenzene
- (d) 5-Ethyl-2-Fluoronitrobenzene

(b) 1-Ethyl-4-Fluoro-3-nitrobenzene

Sol: 4-Ethyl-1-Fluoro-2-nitrobenzene

Ans: (a)

18. Higher order (>3) reactions are rare due to


- (a) Shifting of equilibrium towards reactants due to elastic collisions
- (b) Loss of active species on collision
- (c) Low probability of simultaneous collision of all reacting species
- (d) Increase in entropy as more molecules are involved

Sol: Low probability of simultaneous collision of all reacting species

Ans: (c)

- 19. Arrange benzene, n-hexane and ethyne in decreasing order of their acidic behaviour
 - (a) Benzene > n-hexane > ethyne (b) n-hexane > Benzene > ethyne
 - (c) ethyne > n hexane > Benzene (d) ethyne > Benzene > n- hexane

Sol:

Higher the percentage s- character, higher the acidic character. Ans: (d)

- 20. A colloidal solution is subjected to an electric field than colloidal particles more towards anode. The amount of electrolytes of *BaCl*₃, *AlCl*₃ and *NaCl* required to coagulate the given colloid is in the order
 - (a) $NaCl > BaCl_2 > AlCl_3$ (b) $BaCl_2 > AlCl_3 > NaCl$
 - (c) $AlCl_3 = NaCl = BaCl_2$ (d) $AlCl_3 > BaCl_2 > NaCl$

Sol: $NaCl > BaCl_2 > AlCl_3$

Ans: (a)

- 21. Which of the following is an incorrect statement?
 - (a) Hydrogen bonding is stronger than dispersion forces
 - (b) Sigma bonds are stronger than π -bonds
 - (c) Ionic bonding are non-directional
 - (d) σ electrons are referred to as mobile electrons
 - Sol: π electrons are termed as mobile electrons

Ans: (d)

22. Zeta potential is

- (a) Potential required to bring about coagulation of a colloidal sol
- (b) Potential required to give the particle a speed of 1 cm S^{-1}
- (c) Potential difference between fixed charged layer and the diffused layer having opposite charges
- (d) Potential energy of the colloidal particles

Sol: Zeta-potential = Potential difference between fixed charged layer diffused layer having opposite change.

Ans: (c)

23. Which of the following compound on heating gives N_2O ?

(a) $Pb(NO_3)_2$	(b) NH_4NO_3
(c) NH_4NO_2	(d) NaNO ₃

Sol: $NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$

Ans: (b)

- 24. Which of the following property is true for the given sequence $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$?
 - (a) Reducing property (b) Thermal stability
 - (c) Bond angle (d) Both (b) and (c)

Sol: Both thermal stability and bond angle decreases down the group.

Ans: (d)

25. The correct order of boiling point in the following compounds is

(a) $HF > H_2O > NH_3$	(b) $H_2O > HF > NH_3$
(c) $NH_3 > H_2O > HF$	(d) $NH_3 > HF > H_2O$

Sol: $H_2O > HF > NH_3$

Ans: (b)

26. XeF_6 on partial hydrolysis gives a compound X, which has square pyramidal geometry 'X' is

(a)
$$XeO_3$$
 (b) XeO_4 (c) $XeOF_4$ (d) XeO_2F_2

Sol: $XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$

 $XeOF_4$ has square pyramidal geometry

Ans: (c)

27. A colourless, neutral, paramagnetic oxide of Nitrogen 'P' on oxidation gives reddish brown gas Q. Q on cooling gives colourless gas R. R on reaction with P gives blue solid S. Identify P, Q, R, S respectively

	(a) N_2O, NO, NO	N_2, N_2O_5		(b) $N_2O, NO_2, N_2O_4, N_2O_3$
	(c) NO, NO_2, N_2	$O_4, N_2 O_3$		(d) NO, NO, N_2O_4, N_2O_5
So	bl: $2NO + O_2 \longrightarrow$	2 <i>NO</i> ₂		
2.	$NO_2 \rightleftharpoons N_2O_4$;	$N_2O_4 + 2NO \rightarrow N_4O_6 (N_2O_4)$	03)
A	ns: (c)			

Deeksha House

28. Which of the following does not represent property stated against it?

(a) $CO^{+2} < Fe^{+2} < Mn^{+2}$ – Ionic size

- (b) Ti < V < Mn Number of oxidation states
- (c) $Cr^{+2} < Mn^{+2} < Fe^{+2}$ Paramagnetic behaviour
- (d) Sc > Cr > Fe Density
- Sol: $Cr[Ar] 3d^5 4s^1$ $Cr^{2+} 3d^4 4s^0 = 4$ unpaired electrons

 $Mn[Ar]3d^54s^2Mn^{2+}3d^54s^0 = 5$ unpaired electrons

 $Fe[Ar]3d^{6}4s^{2}$ $Fe^{2+}3d^{6}4s^{0} = 4$ unpaired electrons

Since both Cr^{2+} and Fe^{2+} contain 4 unpaired electrons, the correct option is (c).

Option (d) is also correct because density order given is not correct.

Ans: (c)

- 29. Which one of the following is correct for all elements from Sc to Cu?
 - (a) The lowest oxidation state shown by them is +2
 - (b) 4*S* orbital is completely filled in the ground state
 - (c) 3d orbital is not completely filled in the ground state
 - (d) The ions in +2 oxidation states are paramagnetic

Sol: Paramagnetism is due to the presence of one or more unpaired electrons.

Ans: (d)

- 30. When the absolute temperature of ideal gas is doubled and pressure is halved, the volume of gas
 - (a) will be half of original volume
 - (c) will be 2 time the original volume
- (b) will be 4 times the original volume(d) will be ¼ th times the original volume
- Sol: From the combined gas equation,

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$
$$\frac{p_1 V_1}{T_1} = \frac{\frac{1}{2} p_1 V_2}{2T_1}$$
$$V_1 = \frac{1}{4} V_2$$

$$V_2 = 4V_1$$

Ans: (b)

31. Which of the following pairs has both the ions coloured in aqueous solution?

[Atomic numbers of Sc = 21, Ti = 22, Ni = 28, Cu = 29, Mn = 25]

(a)
$$Sc^{3+}$$
, Mn^{2+} (b) Ni^{2+} , Ti^{4+} (c) Ti^{3+} , Cu^+ (d) Mn^{2+} , Ti^{3+}
Sol: Mn^{2+} , Ti^{3+}
Ans: (d)

- 32. For the crystal field splitting in octahedral complexes,
 - (a) the energy of the e_g orbitals will decrease by $(3/5)\Delta_0$ and that of the t_{2g} will increase by $(2/5)\Delta_0$
 - (b) the energy of the e_g orbitals will increase by $(3/5)\Delta_0$ and that of the t_{2g} will decrease by $(2/5)\Delta_0$
 - (c) the energy of the e_g orbitals will increase by $(3/5)\Delta_0$ and that of the t_{2g} will increase by $(2/5)\Delta_0$
 - (d) the energy of the e_g orbitals will decrease by $(3/5)\Delta_0$ and that of the t_{2g} will decrease by $(2/5)\Delta_0$

Sol: the energy of the e_g orbitals will increase by $(3/5)\Delta_0$ and that of the t_{2g} will decrease by $(2/5)\Delta_0$ Ans: (b)

- 33. Peroxide effect is observed with the addition of HBr but not with the addition of HI to unsymmetrical alkene because
 - (a) H I bond is stronger that H Br and is not cleaved by the free radical
 - (b) H-I bond is weaker than H-Br bond so that iodine free radicals combine to form iodine molecules
 - (c) Bond strength of *HI* and *HBr* are same but free radicals are formed in *HBr*
 - (d) All of these

Sol: H - I bond is weaker than H - Br bond so that iodine free radicals combine to form iodine molecules

Ans: (b)

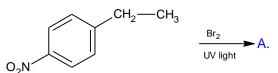
- 34. The IUPAC name of $\left[Co(NH_3)_3(CO_3) \right] Cl$ is
 - (a) Pentaamminecarbonatocobalt (III) Chloride
 - (b) Carbonatopentamminecobalt (III) Chloride
 - (c) Pentaamminecarbonatocobaltate (III) Chloride
 - (d) Pentaammine cobalt (III) Carbonate Chloride
 - Sol: Pentaamminecarbonatocobalt (III) Chloride

Ans: (a)

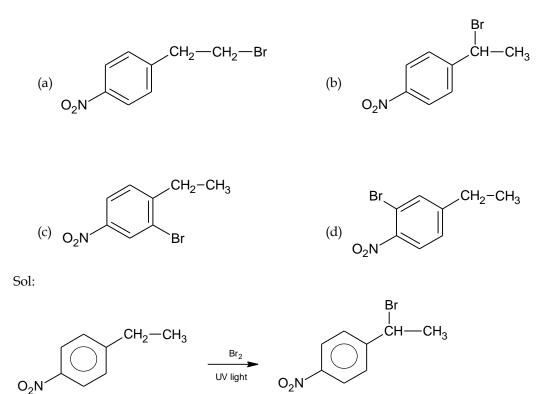
- 35. Homoleptic complexes among the following are
 - (A) $K_3 \left[Al(C_2O_4)_3 \right]$, (B) $\left[CoCl_2(en)_2 \right]^+$ (C) $K_2 \left[Zn(OH)_4 \right]$ (a) (A) only (b) (A) and (B) only Sol: (A) and (C) only Ans: (c)

(c) (A) and (C) only

(d) (C) only

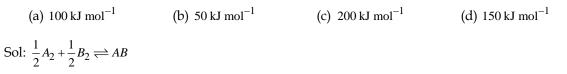

36. The correct order for wavelengths of light absorbed in the complex ions

$$\begin{bmatrix} CoCl(NH_3)_5 \end{bmatrix}^{2+}, \begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{3+} \text{ and } \begin{bmatrix} Co(CN)_6 \end{bmatrix}^{3-} \text{ is} \\ \text{(a) } \begin{bmatrix} CoCl(NH_3)_5 \end{bmatrix}^{2+} > \begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{3+} > \begin{bmatrix} Co(CN)_6 \end{bmatrix}^{3-} \\ \text{(b) } \begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{3+} > \begin{bmatrix} Co(CN)_6 \end{bmatrix}^{3-} > \begin{bmatrix} CoCl(NH_3)_5 \end{bmatrix}^{2+} \\ \text{(c) } \begin{bmatrix} CoCl(NH_3)_5 \end{bmatrix}^{2+} > \begin{bmatrix} Co(CN)_6 \end{bmatrix}^{3-} > \begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{3+} \\ \text{(d) } \begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{3+} > \begin{bmatrix} CoCl(NH_3)_5 \end{bmatrix}^{2+} \begin{bmatrix} CoCl(NH_3)_5 \end{bmatrix}^{3-} \end{bmatrix}$$


Sol: Energy $\alpha \upsilon \alpha \frac{1}{\lambda}$

Ans: (a)

37. Question:



The compound A (major product) is

38. Bond enthalpies of A_2 , B_2 and AB are in the ratio 2:1:2. If bond enthalpy of formation of AB is -100 kJ mol^{-1} . The bond enthalpy of B_2 is

Deeksha House

Let x be the B.E of B_2

 \therefore Bond enthalpy of $A_2 \& AB = 2x$

$$DH_{\text{rean}} = \sum BE_{\text{reactants}} - \sum BE_{\text{products}}$$
$$-100 = \frac{x}{2} + \frac{2x}{2} - 2x$$
$$-100 = \frac{3x}{2} - 2x \text{ or } -200 = 3x - 4x$$
$$-x = -200$$
$$x = 200$$

Ans: (c)

39. The order of reactivity of the compounds

 $C_6H_5CH_2Br, C_6H_5CH(C_6H_5)Br, C_6H_5CH(CH_3)Br$ and $C_6H_5C(CH_3)(C_6H_5)Br$ in S_N^2 reaction is

(a)
$$C_{6}H_{5} - C - Br < C_{6}H_{5} - C -$$

(b)
$$C_{6}H_{5} - \stackrel{H}{C} - \stackrel{H}{Br} < C_{6}H_{5} - \stackrel{H}{C} - \stackrel{H}{Br} < C_{6}H_{5} - \stackrel{H}{C} - \stackrel{H}{Br} < C_{6}H_{5} - \stackrel{H}{C} - \stackrel{H}{Br} = C_{6}H_{5} - \stackrel{H}{C} - \stackrel{H}{Br}$$

(c)
$$C_{6}H_{5}-C-Br < C_{6}H_{5}-C-Br < C_{6}H$$

(d)
$$C_6H_5 \stackrel{H}{\xrightarrow{}}_{CH_3} Rr < C_6H_5 \stackrel{H}{\xrightarrow{}}_{C} Rr < C_6H_5 \stackrel{H}{\xrightarrow{}}_{C_6H_5} rr < C_6H_5 \stackrel{H}{\xrightarrow{}}_{C_6H_5} rr < C_6H_5 \stackrel{H}{\xrightarrow{}}_{C_6H_5} rr$$

Sol:

$$\begin{array}{ccccccccc} CH_{3} & H & H & H \\ | & & | \\ C_{6}H_{5}-C-Br & < C_{6}H_{5}-C-Br & < C_{6}H_{5}-C-Br & < C_{6}H_{5}-C-Br \\ | & & | \\ C_{6}H_{5} & C_{6}H_{5} & CH_{3} & H \end{array}$$

Ans: (a)

40. The major product of the following reaction is $CH_2 = CH - CH_2 - OH \xrightarrow{HBr}_{Excess}$ product [CET 2021]

(a) $CH_3 - CHBr - CH_2Br$ (b) $CH_2 = CH - CH_2Br$ (c) $CH_3 - CHBr - CH_2 - OH$ (d) $CH_3 - CHOH - CH_2OH$

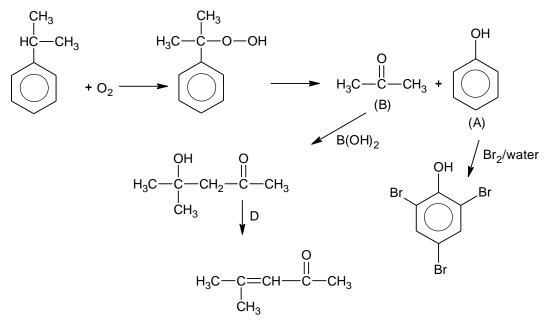
Sol:
$$CH_2 = CH - CH_2 - OH \xrightarrow{HBr}_{Ex^{55}} CH_3 - CHBr - CH_2Br$$

Ans: (a)

Deeksha House

41. Question:

The product 'A' Gives white precipitate when treated with bromine water. The product 'B' is treated with Barium hydroxide to give the product *C*. The compound *C* is heated strongly to form product *D*. The product *D* is


(a) 4-Methylpent-3-en-2-one

(c) 3-Methylpent-3-en-2-one

(b) But-2-enal

(d) 2-Methylbut-2-enal

Sol:

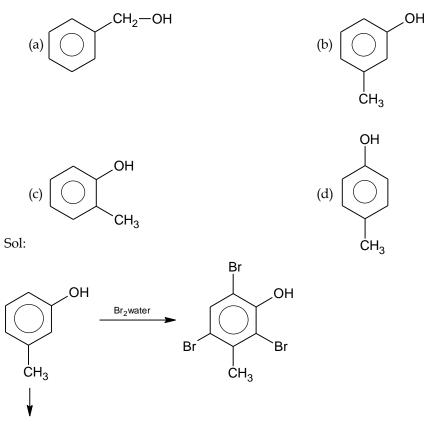
Ans: (a)

42. For the reaction
$$A(g) + B(g) \rightleftharpoons C(g) + D(g); \Delta H = -QKJ$$

The equilibrium constant cannot be disturbed by

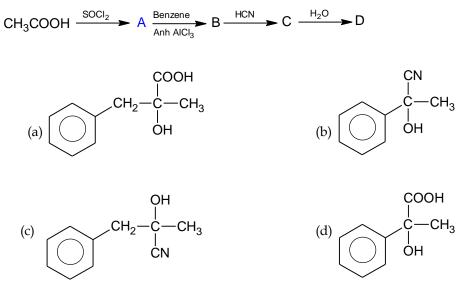
- (a) Addition of *A* (b) Addition of *D*
- (c) Increasing of pressure (d) Increasing of temperature

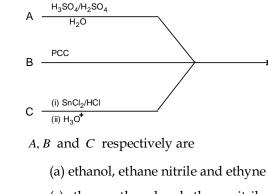
Sol: $\Delta n_g = 0$; Pressure has no effect


43. An organic compound '*X*' on treatment with *PCC* in dichloromethane gives the compound *Y*. Compound '*Y*' reacts with I_2 and alkali to form yellow precipitate of trilodomethane. The compound *X* is

(a) <i>CH</i> ₃ <i>CHO</i>	(b) CH_3COCH_3
(c) CH ₃ CH ₂ OH	(d) <i>CH</i> ₃ <i>COOH</i>

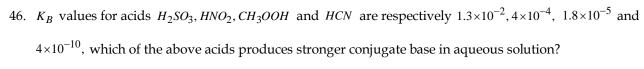
Sol: $CH_3CH_2OH \xrightarrow{PCC/CH_2Cl_2} CH_3CHO \xrightarrow{NaOH/I_2} CHI_3$


Ans: (c)


44. A compound 'A' (C_7H_5O) is insoluble in *NaHCO*₃ solution but dissolve in *NaOH* and gives a characteristic colour with neutral *FeCl*₃ solution. When treated with Bromine water compound 'A' forms the compound *B* with the formula $C_7H_5OBr_3$, 'A' is

Soluble in *NaOH* but insoluble in *NaHCO*₃ Forms neutral colour with neutral *FeCl*₃ Ans: (b)

45. In set of reactions, identify D


Sol:
$$CH = CH \xrightarrow{H_2SO_4/H_gSO_4} CH_3CHO$$

$$CH_{3}CH_{2}OH \xrightarrow{PCC} CH_{3}CHO$$

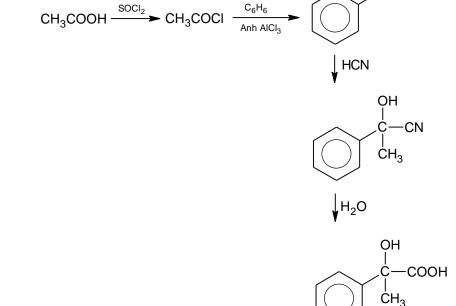
$$CH_{3}CN \xrightarrow{(i) SnCl_{2}/HCl} (ii) H_{3}O^{+} \rightarrow CH_{3}CHO$$
Ans: (c)

(b) ethane, nitrile, ethanol and ethyne

(d) ethyne, ethane nitrile and ethanol

Acetadehyde

0


CH₃

(a) H_2SO_3 (b) HNO₂ (c) CH₃COOH (d) HCN

Sol: *CN*⁻ stronger conjugate base as *HCN* is weakest acid.

Ans: (d)

47. Question:

Sol:

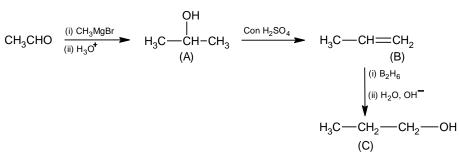
48. The reagent which can do the conversion $CH_3COOH \longrightarrow CH_3 - CH_2 - OH$ is

(a)
$$LiAlH_4$$
 / ether (b) H_2 , Pt

(c)
$$NaBH_4$$
 (d) Na and C_2H_5OH

Sol: $CH_3COOH \xrightarrow{LiAlH_4/\text{ether}} CH_3CH_2 - OH$

Ans: (a)


49. $CH_3CHO \xrightarrow{(i) CH_3M_gBr} A \xrightarrow{Conc H_2SO_4} B \xrightarrow{(i) B_2H_6} C$

A and C are

(a) Identical

(b) Position isomers (c) Functional isomers (d) Optical isomers

Sol:

A and *C* are position isomers.

Ans: (b)

- 50. Which of the following is not true for oxidation?
 - (a) addition of oxygen (b) addition of electronegative element
 - (c) removal of hydrogen (d) removal of electronegative element

Sol: Oxidation is addition of oxygen or electronegative element.

Oxidation is removal of hydrogen or electropositive element.

Ans: (d)

51. Which is the most suitable reagent for the following conversion?

$$H_3C$$
— CH = CH - CH_2 - C - CH_3 — H_3C - CH = CH - CH_2 - C - OH

- (a) Tollen's reagent
- (b) Benzoyl peroxide
- (c) I_2 and *NaOH* solution with subsequent acidification
- (d) Sn and NaOH solution

Sol:

H₃C-CH=CH-CH₂-C-CH₃ methyl ketone

$$\downarrow$$
 NaOH/I₂
H₃C-CH=CH-CH₂-COOH + CHI₃

Ans: (c)

The product B is

- (a) *N*, *N* dimethyl phenyl methanamine
- (c) N Benzyl N methyl methanamine

Sol:
$$C_6H_5CH_2Cl \xrightarrow{alc NH_3} C_6H_5CH_2NH_2 \xrightarrow{2CH_3Cl}$$

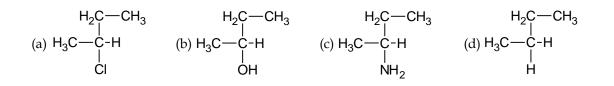
$$C_6H_5-CH_2-N-CH_3$$

N, N- dimethyl benzenamine

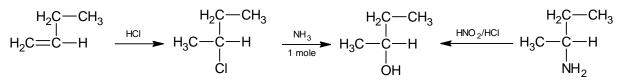
Ans: (b)

- 53. The method by which aniline cannot be prepared is
 - (a) Nitration of benzene followed by reduction with Sn and con HCl
 - (b) Degradation of benzamide with bromine in alkaline solution
 - (c) Reduction of nitrobenzene with H_2 / Pd is ethanol
 - (d) Potassium salt of phthalimide treated with chlorobenzene followed by the hydrolysis with aqueous *NaOH* solution

Sol: Gabriel synthesis applicable only for aliphatic amines.


Ans: (d)

- 54. Permanent hardness cannot be removed by
 - (a) Using washing soda (b) Calgon's method
 - (c) Clark's method (d) Ion exchange method


Sol: Clark's method is applicable for temporary hardness.

Ans: (c)

55. A hydrocarbon $A(C_4H_8)$ on reaction with *HCl* gives a compound $B(C_4H_9Cl)$ which on reaction with 1 mol of *NH*₃ gives compound $C(C_4H_{11}N)$. On reacting with *NaNO*₂ and *HCl* followed by treatment with water, compound *C* yields an optically active compound *D*. The *D* is

Sol:

Ans: (b)

(d) phenyl -N, N – dimethyl methanamine

56. RNA and DNA are chiral n	nolecules, their chirality	is due to the presence of	
(a) <i>D</i> -Sugar compone	ent	(b) <i>L</i> –Sugar compon	ent
(c) Chiral bases		(d) Chiral phosphate e	ester unit
Sol: <i>D</i> –Sugar component			
Ans: (a)			
57. The property of the alkalin	e earth metals that incre	eases with their atomic n	umber is
(a) Ionisation enthalpy		(b) Electronegativity	
(c) Solubility of their h	ydroxide in water	(d) Solubility of their s	sulphate in water
Sol: Solubility of hydroxide	es of group II elements i	increases down the group	2.
Ans: (c)			
58. Primary structure in a 1	nucleic acid chain cor	ntains bases as $GATG$	C The chain which is
complementary to this cha	in is		
(a) <i>G G T G A</i>	(b) <i>T G A A G</i>	(c) <i>CTACG</i>	(d) <i>T T T A G</i>
Sol: <i>C T A C G</i>			
Ans: (c)			
59. In the detection of II gro	oup acid radical, the s	alt containing chloride	is treated with concentrated
sulphuric acid, the colourle	ess gas is liberated. The	name of the gas is	
(a) Hydrogen chloride	gas	(b) Chlorine gas	
(c) Sulphur dioxide gas	3	(d) Hydrogen gas	
Sol: $MCl + H_2SO_4 \longrightarrow MH_2$	$HSO_4 + HCl_{(g)}$		
Ans: (a)			
60. The number of six member	red and five membered	rings in Buckminster Ful	lerene respectively is
(a) 20,12	(b) 12, 20	(c) 14,18	(d) 14,11
Sol: 20,12			
Ans: (a)			

Key Answers:

1. b	2. c	3. a	4. a	5. d	6. c	7. b	8. a	9. c	10. b
11. a	12. a	13. a	14. b	15. a	16. c	17. a	18. c	19. d	20. a
21. d	22. c	23. b	24. d	25. b	26. c	27. с	28. c	29. d	30. b
31. d	32. b	33. b	34. a	35. c	36. a	37. b	38. c	39. a	40. a
41. a	42. c	43. c	44. b	45. d	46. d	47. c	48. a	49. b	50. d
51. c	52. b	53. d	54. c	55. b	56. a	57. c	58. c	59. a	60. a