What is Coordinate Geometry?

Coordinate Geometry, or analytic geometry, connects algebra and geometry by representing geometric shapes and problems using equations. Each point on a plane is represented by an ordered pair:

\boldsymbol{(x, y)}

where:

  • \boldsymbol{x} is the horizontal distance (abscissa).
  • \boldsymbol{y} is the vertical distance (ordinate).

Why Learn the Section Formula?

The section formula helps locate a point that divides a line segment joining two points in a given ratio. It is widely applicable in:

  • Engineering and Design: To proportionally divide structures or objects.
  • Navigation and Mapping: Locating intermediate points between destinations.
  • Graphics and Animation: Rendering positions in 2D models.
  • Physics: Analyzing motion along a straight line.

Section Formula

The section formula provides the coordinates of a point \boldsymbol{P(x, y)} dividing a line segment joining two points \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)} in the ratio \boldsymbol{m:n}:

\displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)}

Special Cases:

  1. Midpoint Formula:
    When the dividing point \boldsymbol{P(x, y)} divides the line segment into equal parts (\boldsymbol{m = n}): \displaystyle\boldsymbol{M(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)}
  2. Centroid of a Triangle:
    The point \boldsymbol{G(x, y)} that divides each median of a triangle into a ratio of \boldsymbol{2:1} (vertex to midpoint): \displaystyle\boldsymbol{G(x, y) = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)}
  3. Distance Formula:
    The distance \boldsymbol{d} between two points \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)} is given by: \boldsymbol{d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}
  4. External Division Formula:
    When a point \boldsymbol{P(x, y)} divides the line segment externally in the ratio \boldsymbol{m:n}, the formula is: \displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n}\right)}
  5. Slope of a Line:
    The slope \boldsymbol{m} of a line passing through two points \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)} is: \displaystyle\boldsymbol{m = \frac{y_2 - y_1}{x_2 - x_1}}

Section Formula

Definition:

The section formula helps determine the coordinates of a point \boldsymbol{P(x, y)} that divides a line segment joining two points \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)} in a given ratio \boldsymbol{m:n}. This formula is crucial for solving problems in geometry where proportional division of line segments is required.

Formula:

The coordinates of the point \boldsymbol{P(x, y)} are given by:

\displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)}

Where:

  1. \boldsymbol{P(x, y)}: Represents the coordinates of the dividing point.
  2. \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)}: Are the coordinates of the endpoints of the line segment.
  3. \boldsymbol{m:n}: Denotes the ratio in which the point divides the line segment.
    \boldsymbol{m} and \boldsymbol{n} are positive constants.

Derivation of the Section Formula:

To derive the formula for the coordinates of a point \boldsymbol{P(x, y)} that divides a line segment joining two points \boldsymbol{A(x_1, y_1)} and \boldsymbol{B(x_2, y_2)} in the ratio \boldsymbol{m:n}.

Step-by-Step Derivation

  1. Consider a Line Segment:
    • Let \boldsymbol{A(x_1, y_1)} and \boldsymbol{B(x_2, y_2)} be the endpoints of the line segment.
    • Let \boldsymbol{P(x, y)} be the point dividing \boldsymbol{AB} in the ratio \boldsymbol{m:n}.
  2. Proportionality:
    • The division ratio implies: \displaystyle\boldsymbol{\frac{\text{AP}}{\text{PB}} = \frac{m}{n}}
    • This means that the distance \boldsymbol{\text{AP}} is \boldsymbol{m} parts, and \boldsymbol{\text{PB}} is \boldsymbol{n} parts.
  3. Use of Coordinates:
    • In coordinate geometry, the distances along the x-axis and y-axis are proportional to the division ratio.
    • Let the x-coordinate of \boldsymbol{P} be \boldsymbol{x}, and the y-coordinate be \boldsymbol{y}.
  4. Apply Proportionality Along the X-Axis:
    • The position of \boldsymbol{P} along the x-axis is determined by the weighted average of \boldsymbol{x_1} and \boldsymbol{x_2}: \displaystyle\boldsymbol{\frac{x - x_1}{x_2 - x} = \frac{m}{n}}
    • Cross-multiply to get: n\boldsymbol{n(x - x_1) = m(x_2 - x)}
    • Expand and rearrange: \boldsymbol{nx - nx_1 = mx_2 - mx} \boldsymbol{nx + mx = mx_2 + nx_1} \boldsymbol{x(m + n) = mx_2 + nx_1}
    • Solve for \boldsymbol{x}: \displaystyle\boldsymbol{x = \frac{mx_2 + nx_1}{m + n}}
  5. Apply Proportionality Along the Y-Axis:
    • Similarly, for the y-coordinate of \boldsymbol{P}: \displaystyle\boldsymbol{\frac{y - y_1}{y_2 - y} = \frac{m}{n}}
    • Cross-multiply and solve as done for \boldsymbol{x}: \boldsymbol{n(y - y_1) = m(y_2 - y)} \boldsymbol{ny - ny_1 = my_2 - my} \boldsymbol{ny + my = my_2 + ny_1} \boldsymbol{y(m + n) = my_2 + ny_1}
    • Solve for \boldsymbol{y}: \displaystyle\boldsymbol{y = \frac{my_2 + ny_1}{m + n}}
  6. Combine Results:
    • The coordinates of \boldsymbol{P} are: \displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)}

Applications of the Section Formula:

  1. Internal Division:
    • When the point lies between the two endpoints of the line segment, the section formula is applied as:
      \displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)}
  2. External Division:
    • When the point divides the line segment externally, the formula becomes:
      \displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n}\right)}
      Here, \boldsymbol{m > n} to ensure valid results.
  3. Special Cases:
    • Midpoint Formula:
      If \boldsymbol{m = n}, the formula simplifies to:
      \displaystyle\boldsymbol{M(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)}
    • Centroid of a Triangle:
      When dividing the medians of a triangle in the ratio \boldsymbol{2:1}:
      \displaystyle\boldsymbol{G(x, y) = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)}
  4. Distance Formula (for verifying calculations):
    The distance between two points \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)} is:
    \boldsymbol{d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}
  5. Slope of a Line:
    The slope of a line passing through two points \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)} is:
    \displaystyle\boldsymbol{m = \frac{y_2 - y_1}{x_2 - x_1}}

Types of Division

Internal Division

Internal division occurs when the point \boldsymbol{P(x, y)} lies between the two endpoints of a line segment \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)}. This means that the point divides the line segment internally in a specified ratio \boldsymbol{m:n}.

  • Formula for Internal Division:

\displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)}

  • Explanation:
    • \boldsymbol{m} and \boldsymbol{n} represent the weights of division, such that: \displaystyle\boldsymbol{\frac{\text{AP}}{\text{PB}} = \frac{m}{n}}
    • The formula calculates the weighted average of the coordinates of \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)}.
  • Example: Find the coordinates of a point dividing the line segment joining \boldsymbol{(2, 3)} and \boldsymbol{(8, 7)} in the ratio \boldsymbol{3:2}.
    • Using the internal division formula: \displaystyle\boldsymbol{P(x, y) = \left(\frac{3(8) + 2(2)}{3+2}, \frac{3(7) + 2(3)}{3+2}\right) = \left(\frac{24 + 4}{5}, \frac{21 + 6}{5}\right) = \left(\frac{28}{5}, \frac{27}{5}\right)}
    • \boldsymbol{P(x, y) = \left(5.6, 5.4\right)}.

External Division

External division occurs when the point \boldsymbol{P(x, y)} lies outside the line segment, such that it divides the line segment \boldsymbol{(x_1, y_1)} and \boldsymbol{(x_2, y_2)} externally in a specified ratio \boldsymbol{m:n}. This type of division happens when the line segment is extended beyond one of the endpoints.

  • Formula for External Division:

\displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n}\right)}

  • Explanation:
    • \boldsymbol{m} and \boldsymbol{n} still represent the weights of division, but the subtraction in the formula reflects the external division.
    • For valid results, \boldsymbol{m > n} to ensure \boldsymbol{m-n > 0}.
  • Example: Find the coordinates of a point dividing the line segment joining \boldsymbol{(4, 6)} and \boldsymbol{(10, 12)} externally in the ratio \boldsymbol{5:3}.
    • Using the external division formula: \displaystyle\boldsymbol{P(x, y) = \left(\frac{5(10) - 3(4)}{5-3}, \frac{5(12) - 3(6)}{5-3}\right) = \left(\frac{50 - 12}{2}, \frac{60 - 18}{2}\right) = \left(\frac{38}{2}, \frac{42}{2}\right)}
    • \boldsymbol{P(x, y) = \left(19, 21\right)}.

Comparison of Internal and External Division

AspectInternal DivisionExternal Division
Position of PointLies between the endpoints of the line segment.Lies outside the endpoints, beyond the line segment.
Formula\displaystyle\boldsymbol{\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)}\displaystyle\boldsymbol{\left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n}\right)}
Ratio Condition\boldsymbol{m} and \boldsymbol{n} are both positive.\boldsymbol{m > n} for valid results.

Solved Examples

Example 1: Internal Division

Problem:
Find the point dividing a line segment joining \boldsymbol{(2, 3)} and \boldsymbol{(8, 7)} in the ratio \boldsymbol{2:3}.

Solution: Using the section formula for internal division:

\displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)}

Substitute:

  • \boldsymbol{(x_1, y_1) = (2, 3)}
  • \boldsymbol{(x_2, y_2) = (8, 7)}
  • \boldsymbol{m = 2}, \boldsymbol{n = 3}

\displaystyle\boldsymbol{P(x, y) = \left(\frac{2(8) + 3(2)}{2 + 3}, \frac{2(7) + 3(3)}{2 + 3}\right)}

Simplify:

\displaystyle\boldsymbol{P(x, y) = \left(\frac{16 + 6}{5}, \frac{14 + 9}{5}\right) = \left(\frac{22}{5}, \frac{23}{5}\right)} \boldsymbol{P(x, y) = \left(4.4, 4.6\right)}

Example 2: External Division

Problem:
Determine the coordinates of a point dividing a line segment joining \boldsymbol{(5, 2)} and \boldsymbol{(11, 8)} externally in the ratio \boldsymbol{3:1}.

Solution: Using the section formula for external division:

\displaystyle\boldsymbol{P(x, y) = \left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}\right)}

Substitute:

  • \boldsymbol{(x_1, y_1) = (5, 2)}
  • \boldsymbol{(x_2, y_2) = (11, 8)}
  • \boldsymbol{m = 3}, \boldsymbol{n = 1}

\displaystyle\boldsymbol{P(x, y) = \left(\frac{3(11) - 1(5)}{3 - 1}, \frac{3(8) - 1(2)}{3 - 1}\right)}

Simplify:

\displaystyle\boldsymbol{P(x, y) = \left(\frac{33 - 5}{2}, \frac{24 - 2}{2}\right) = \left(\frac{28}{2}, \frac{22}{2}\right)} \boldsymbol{P(x, y) = \left(14, 11\right)}P(x,y)=(14,11)</span> <h4><b>Example 3: Application to Geometry Problems</b></h4> <ol>  	<li style="font-weight: 400;" aria-level="1"><b>Verifying Collinearity:</b><b> </b><span style="font-weight: 400;">Check if points\boldsymbol{A(1, 2)},\boldsymbol{B(4, 5)}, and\boldsymbol{C(7, 8)}are collinear.</span> <ul>  	<li style="font-weight: 400;" aria-level="2"><span style="font-weight: 400;">Find the slope between\boldsymbol{A}and\boldsymbol{B}:\displaystyle\boldsymbol{m_1 = \frac{y_2 – y_1}{x_2 – x_1} = \frac{5 – 2}{4 – 1} = \frac{3}{3} = 1}</span></li>  	<li style="font-weight: 400;" aria-level="2"><span style="font-weight: 400;">Find the slope between\boldsymbol{B}and\boldsymbol{C}:\displaystyle\boldsymbol{m_2 = \frac{y_2 – y_1}{x_2 – x_1} = \frac{8 – 5}{7 – 4} = \frac{3}{3} = 1}</span></li>  	<li style="font-weight: 400;" aria-level="2"><span style="font-weight: 400;">Since\boldsymbol{m_1 = m_2}, the points are collinear.</span></li> </ul> </li>  	<li style="font-weight: 400;" aria-level="1"><b>Finding the Midpoint:</b><b> </b><span style="font-weight: 400;">Find the midpoint of a line segment joining\boldsymbol{(-2, 4)}and\boldsymbol{(6, -8)}.</span> <ul>  	<li style="font-weight: 400;" aria-level="2"><span style="font-weight: 400;">Using the midpoint formula:\displaystyle\boldsymbol{M(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)}</span></li>  	<li style="font-weight: 400;" aria-level="2"><span style="font-weight: 400;">Substitute:\displaystyle\boldsymbol{M(x, y) = \left(\frac{-2 + 6}{2}, \frac{4 – 8}{2}\right) = \left(\frac{4}{2}, \frac{-4}{2}\right) = \left(2, -2\right)}$

Related Topics

Join Deeksha Vedantu

> PU + Competitive Exam CoachingPreferred Choice For Toppers25+ Years of Academic Excellence70k+ Success Stories

Related Pages

Latest Posts

  • Take The First Step Towards Cracking The Toughest Exams
  • q 03
  • q 03
  • q 03
  • q 03
  • 5 Ways To Solve Any Numerical