

PHYSICS

SCIENCE Paper – 1

(Two hours)

Answers to this Paper must be written on the paper provided separately.

You will **not** be allowed to write during the first **15** minutes.

This time is to be spent in reading the Question Paper.

The time given at the head of this Paper is the time allowed for writing the answers.

Section I is compulsory. Attempt **any four** questions from **Section II**.

The intended marks for questions or parts of questions are given in brackets [].

SECTION I (40 Marks)

Attempt all questions from this Section.

A brass ball is hanging from a stiff cotton thread. Draw a neat labelled diagram

showing the forces acting on the brass ball and the cotton thread.

Question 1

(b)	The distance between two bodies is doubled. How is the magnitude of	[2]
	gravitational force between them affected?	
(c)	Why is a jack screw provided with a long arm?	[2]
(d)	If the power of a motor be 100 kW, at what speed can it raise a load of	[2]
	50,000 N?	

(e) Which class of lever will always have MA > 1 and why? [2]

Question 2

(a)	Define heat capacity and state its SI unit.	[2]
(b)	Why is the base of a cooking pan generally made thick?	[2]
(c)	A solid of mass 50 g at 150°C is placed in 100 g of water at 11°C, when the final	[2]
	temperature recorded is 20°C. Find the specific heat capacity of the solid.	
	(Specific heat capacity of water = $4.2 \text{ J/g}^{\circ}\text{C}$)	

This Paper consists of 6 printed pages.

T17 521 Turn over

[2]

(d)	How is the refractive index of a material related to:	[2]
	(i) real and apparent depth?	
	(ii) velocity of light in vacuum or air and the velocity of light in a given medium?	
(e)	State the conditions required for total internal reflection of light to take place.	[2]
Ques	tion 3	
(a)	Draw a ray diagram to show the refraction of a monochromatic ray through a	[2]
	prism when it suffers minimum deviation.	
(b)	The human ear can detect continuous sounds in the frequency range from 20 Hz	[2]
	to 20,000 Hz. Assuming that the speed of sound in air is 330 ms ⁻¹ for all	
	frequencies, calculate the wavelengths corresponding to the given extreme	
	frequencies of the audible range.	
(c)	An enemy plane is at a distance of 300 km from a radar. In how much time the	[2]
	radar will be able to detect the plane? Take velocity of radiowaves as 3 x 10 ⁸	
	ms^{-1} .	
(d)	How is the frequency of a stretched string related to:	[2]
	(i) its length?	
	(ii) its tension?	
(e)	Define specific resistance and state its SI unit.	[2]
Ques	tion 4	
(a)	An electric bulb of resistance 500Ω , draws a current of 0.4A. Calculate the	[2]
	power of the bulb and the potential difference at its end.	
(b)	State two causes of energy loss in a transformer.	[2]
(c)	State two characteristics of a good thermion emitter.	[2]
(d)	State two factors upon which the rate of emission of thermions depends.	[2]
(e)	When does the nucleus of an atom tend to be radioactive?	[2]

T17 521

SECTION II (40 Marks)

Attempt any four questions from this Section

Question 5

- (a) A uniform half metre rule balances horizontally on a knife edge at 29 cm mark [3] when a weight of 20 gf is suspended from one end.
 - (i) Draw a diagram of the arrangement.
 - (ii) What is the weight of the half metre rule?
- (b) (i) A boy uses a single fixed pulley to lift a load of 50 Kgf to some height. [3] Another boy uses a single movable pulley to lift the same load to the same height. Compare the effort applied by them. Give a reason to support your answer.
 - (ii) How does uniform circular motion differ from uniform linear motion?
 - (iii) Name the process used for producing electricity using nuclear energy.
- (c) A pulley system with VR = 4 is used to lift a load of 175 kgf through a vertical [4] height of 15 m. The effort required is 50 kgf in the downward direction.

 (g = 10 N kg⁻¹)

Calculate:

- (i) Distance moved by the effort.
- (ii) Work done by the effort.
- (iii) M.A. of the pulley system.
- (iv) Efficiency of the pulley system.

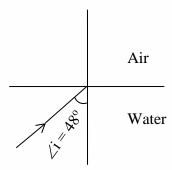
Question 6

- (a) (i) How is the transference of heat energy by radiation prevented in a [3] calorimeter?
 - (ii) You have a choice of three metals A, B and C, of specific heat capacities 900 Jkg^{-1o}C⁻¹, 380 Jkg^{-1o}C⁻¹ and 460 Jkg^{-1o}C⁻¹ respectively, to make a calorimeter. Which material will you select? Justify your answer.

T17 521 3 Turn Over

(b) Calculate the mass of ice needed to cool 150g of water contained in a calorimeter [3] of mass 50g at 32°C such that the final temperature is 5°C.

Specific heat capacity of calorimeter = $0.4 \text{ J/g}^{\circ}\text{C}$

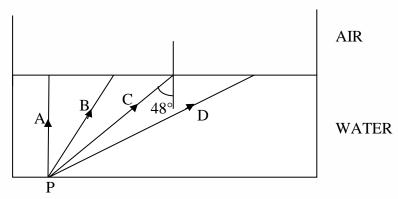

Specific heat capacity of water $= 4.2 \text{ J/g}^{\circ}\text{C}$

Latent heat capacity of ice = 330 J/g

- (c) (i) Name the radiations which are absorbed by greenhouse gases in the earth's [4] atmosphere.
 - (ii) A radiation X is focused by a particular device on the bulb of a thermometer and mercury in the thermometer shows a rapid increase. Name the radiation X.
 - (iii) Name two factors on which the heat energy liberated by a body depends.

Question 7

- (a) A Lens forms an upright and diminished image of an object when the object is placed at the focal point of the given lens.
 - (i) Name the lens.
 - (ii) Draw a ray diagram to show the image formation.
- (b) A ray of light travels from water to air as shown in the diagram given below: [3]



- (i) Copy the diagram and complete the path of the ray. Given the critical angle for water is 48° .
- (ii) State the condition so that total internal reflection occurs in the above diagram.

(c) The diagram below shows a point source P inside a water container. Four rays

[4]
A, B, C, D starting from the source P are shown upto the water surface.

- (i) Show in the diagram the path of these rays after striking the water surface.
 The Critical Angle for water air surface is 48°.
- (ii) Name the phenomenon which the rays B and D exhibit.

Question 8

(a) Name the factor that determines:

[3]

- (i) Loudness of the sound heard.
- (ii) Quality of the note.
- (iii) Pitch of the note.
- (b) (i) What are damped vibrations?

[3]

- (ii) Give one example of damped vibrations.
- (iii) Name the phenomenon that causes a loud sound when the stem of a vibrating tuning fork is kept pressed on the surface of a table.
- (c) (i) A wire of length 80 cm has a frequency of 256 Hz. Calculate the length of a similar wire under similar tension, which will have frequency 1024 Hz.
 - (ii) A certain sound has a frequency of 256 hertz and a wavelength of 1.3 m.
 - 1. Calculate the speed with which this sound travels.
 - 2. What difference would be felt by a listener between the above sound and another sound travelling at the same speed, but of wavelength 2.6 m?

T17 521 5 Turn Over

Question 9

- (a) (i) Name the colour code of the wire which is connected to the metallic body of an appliance. [3]
 - (ii) Draw the diagram of a dual control switch when the appliance is switched 'ON'.
- (b) (i) Which particles are responsible for current in conductors? [3]
 - (ii) To which wire of a cable in a power circuit should the metal case of a geyser be connected?
 - (iii) To which wire should the fuse be connected?
- (c) (i) Explain the meaning of the statement 'current rating of a fuse is 5A'. [4]
 - (ii) In the transmission of power the voltage of power generated at the generating stations is stepped up from 11kV to 132kV before it is transmitted. Why?

Question 10

- (a) Answer the following questions based on a hot cathode ray tube. [3]
 - (i) Name the charged particles.
 - (ii) State the approximate voltage used to heat the filament.
 - (iii) What will happen to the beam when it passes through the electric field?
- (b) State three factors on which the rate of emission of electrons from a metal [3] surface depends.
- (c) (i) What are free electrons? [4]
 - (ii) Why do they not leave the metal surface on their own?
 - (iii) How can they be made to leave the metal surface? (State any two ways)