Key Notes

Chapter-13

Surface Areas and Volumes

- Cylinder: A solid obtained by revolving a rectangular lamina about one of its sides is called a right circular cylinder.
- Right Circular Cone: A solid obtained by revolving a right-angled triangular lamina about any side (other than the hypotenuse) is called a right circular cone.
- Sphere: A sphere is a solid obtained on revolving a circle about any of its diameters.
- Hemisphere: When a sphere is cut by a plane through its center into two equal parts, then each part is called a hemisphere.
- Spherical Shell: The solid enclosed between two concentric sphere is called a spherical shell.
- Hemisphere Shell: The solid enclosed between two concentric hemispheres is called a hemispherical shell.
- Frustum of a Cone: If a cone is cut by a plane parallel to the base of the cone, then the portion between this plane and the base is called the frustum of the cone.
- Curved surface area of cylinder of radius r and height $h=2 \pi r h$ square units.
- Total surface area of cylinder of radius r and height $h=2 \pi r(r+h)$ square units.
- Volume of cylinder of radius r and height $h=\pi r h$ cubic units.
- Curved surface area of cone of radius r, height h and slant height $1=\pi r l$ square units where $\mathrm{l}=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}$
- Total surface area of cone $=\pi r(l+r) s q$. units.
- Volume of cone $=\frac{1}{3} \pi^{2}$. cubic units.
- Total surface area of sphere of radius r units $=4 \pi r^{2}$ sq. units.
- Curved surface area of hemisphere of radius r units $=2 \pi r^{2} s q$. units.
- Total surface area of a solid hemisphere of radius r units $=3 \pi r^{2}$ sq. units.

Key Notes

- Volume of sphere of radius r units $=\frac{4}{\sim} \pi r^{3}$ cubic units.
- Volume of hemisphere of radius r units $=\frac{2}{2} \pi \mathrm{r}^{3}$ cubic units.
- Curved surface area of frustum $=\pi l(r+R)+\pi\left(r^{2}+R^{2}\right)$ sq. units. where 1 slant height of frustum and radii of circular ends are r and R.
- Total surface area of frustum $=\pi l(r+R)+\pi\left(r^{2}+R^{2}\right)$ sq. units.
- Volume of Frustum $==\frac{1}{3} \pi h\left(r^{2}+\mathrm{R}^{2}+\mathrm{rR}\right)$ cubic units. Where $\mathrm{l}=\sqrt{\mathrm{h}^{2}+(\mathrm{R}-\mathrm{r})^{2}}$

