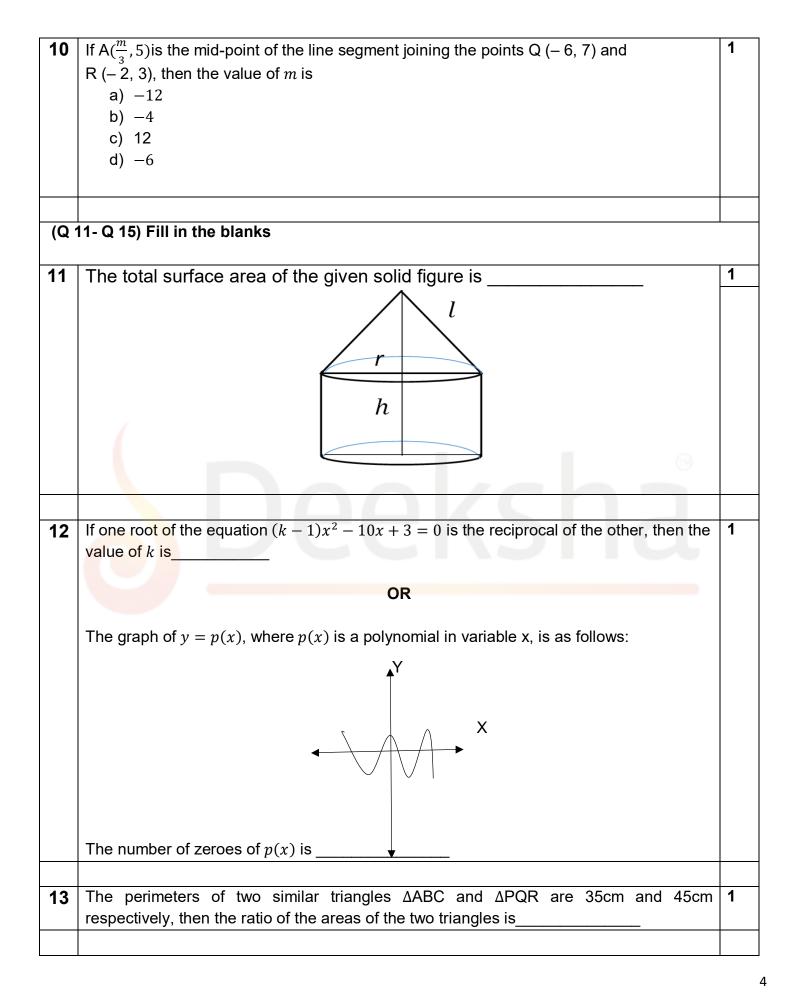


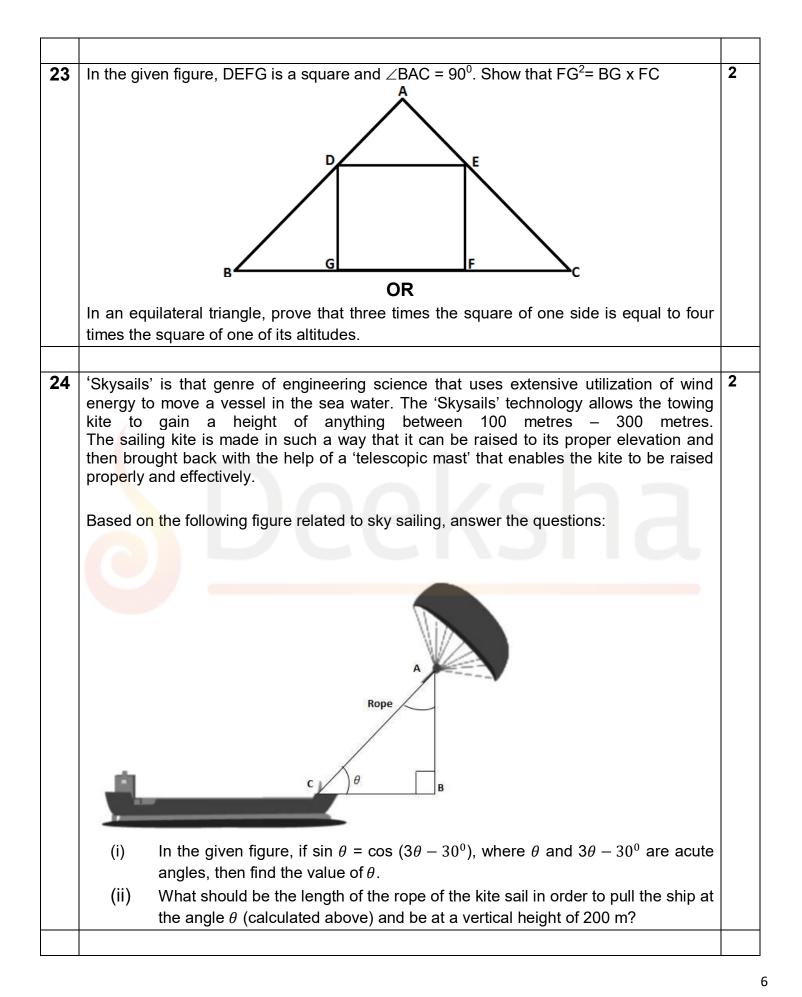
Sample Paper 2

Max. Marks: 80

Duration : 3 hrs


General Instructions:

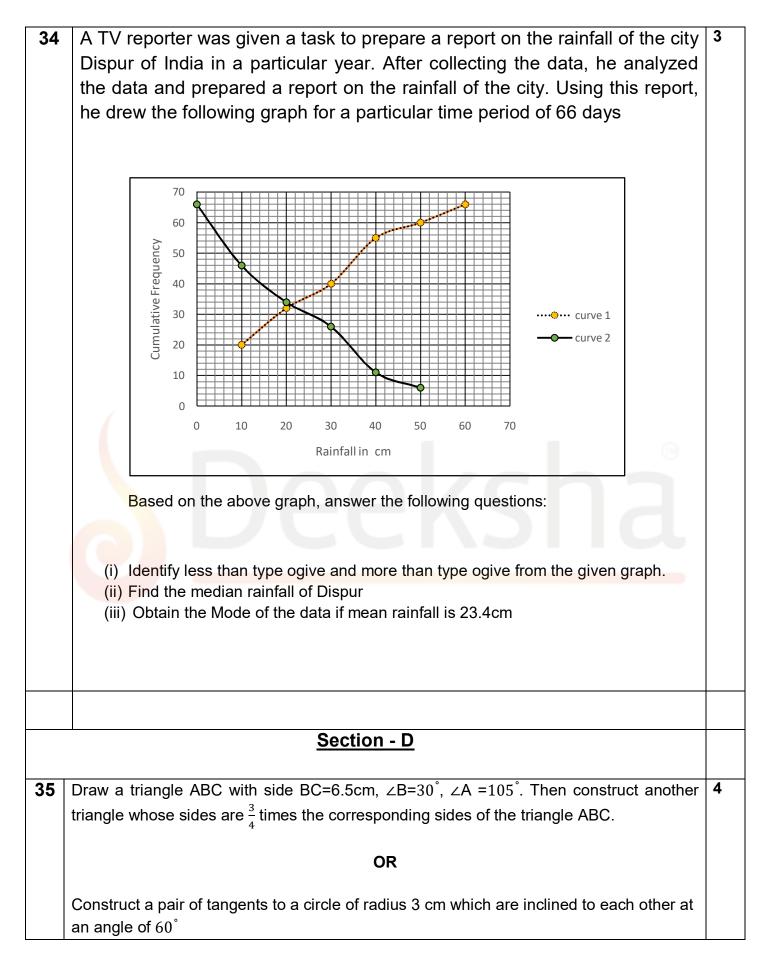
- (i) All the questions are compulsory.
- (ii) The question paper consists of 40 questions divided into 4 sections A, B, C, and D.
- Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.


SECTION A Q1-Q10 are multiple choice questions. Select the most appropriate answer from the given options. 1 The decimal representation of $\frac{11}{2^3 \times 5}$ will a) terminate after 1 decimal place b) terminate after 2 decimal places c) terminate after 3 decimal places d) not terminate 1

2	Consider the	ne following	frequency c	listribution o	f the heights	s of 60 stude	ents of a class	1
	Height (in cm)	150-155	155-160	160-165	165-170	170-175	175-180	
	,							
	No of students	15	13	10	8	9	5	
	The upper	limit of the r	nedian class	s in the give	n data is			
	a) 165							
	b) 155							
	c) 160 d) 170							
	u) 170							
3	The LCM c a) 12	of smallest ty	wo digit com	posite num	per and sma	llest compos	site number is	1
	b) 4							
	c) 20							
	d) 44							
4	For which	value(s) of <i>p</i>	, will the line	es represen	ted by the fo	llowing pair	of linear	1
	equations	be parallel						
				3x - y - 6x - 2y - 2y - 3x - 3x - 2y - 3x - 3				
	a) all re	eal values e	xcept 10	$0\chi Ly$	p = 0			
	b) 10							
	c) 5/2 d) 1/2							
	u) 1/2							

5	If triangle ABC is right angled at C, then the value of sec (A+B) is a) 0 b) 1 c) $\frac{2}{\sqrt{3}}$ d) not defined	1
6	If $sin\theta + cos\theta = \sqrt{2}cos\theta$, $(\theta \neq 90^{\circ})$ then the value of $tan\theta$ is a) $\sqrt{2} - 1$ b) $\sqrt{2} + 1$ c) $\sqrt{2}$ d) $-\sqrt{2}$	1
7	Given that $sin\alpha = \frac{\sqrt{3}}{2}$ and $cos\beta = 0$, then the value of $\beta - \alpha$ is a) 0° b) 90° c) 60° d) 30°	1
8	The point which divides the line segment joining the points (8, -9) and (2, 3) in ratio 1 : 2 internally lies in the a) I quadrant b) II quadrant c) III quadrant d) IV quadrant 	1
9	The distance of the point P (-3, -4) from the <i>x</i> -axis (in units) is a) 3 b) -3 c) 4 d) 5	1

14	Fill the two blanks in the sequence 2,, 26, so that the sequence forms an	1
	A.P	
15	A number is chosen at random from the numbers -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5. Then	1
	the probability that square of this number is less than or equal to 1 is	
(0 1	6- Q 20) Answer the following	
16	Write one rational and one irrational number lying between 0.25 and 0.32	1
10	while one rational and one mational number lying between 0.25 and 0.52	•
17	In the figure, if $\angle ACB = \angle CDA$, $AC = 6$ cm and $AD = 3$ cm, then find the length of AB	1
	С	
	\bigwedge	
	A B	
	D	
18	If the angle between two tangents drawn from an external point 'P' to a circle of radius 'r'	1
	and centre O is 60 ⁰ , then find the length of OP.	
	OR	
	If the radii of two concentric circles are 4 cm and 5 cm, then find the length of each	
	chord of one circle which is tangent to the other circle.	
	V	
19	If the first three terms of an A.P are b, c and 2b, then find the ratio of b and c	1
10		•
20	Find the value(s) of k for which the quadratic equation $x^2 + 2\sqrt{2}kx + 18 = 0$ has equal	1
	roots	
	Section – B	<u> </u>
21	Find the number of natural numbers between 102 and 998 which are divisible by 2 and 5	2
	both.	
	Drove that the restands since macrifying a sincle is a square	2
22	Prove that the rectangle circumscribing a circle is a square.	2



25	Jayanti throws a pair of dice and records the product of the numbers appearing on the dice. Pihu throws 1 dice and records the squares the number that appears on it. Who	2
	has the better chance of getting the number 36? Justify?	
	OR	
	 An integer is chosen between 70 and 100, Find the probability that it is (a) a prime number (b) divisible by 7 	
26	Isha is 10 years old girl. On the result day, Isha and her father Suresh were very happy as she got first position in the class. While coming back to their home, Isha asked for a treat from her father as a reward for her success. They went to a juice shop and asked for two glasses of juice.	2
	Aisha, a juice seller, was serving juice to her customers in two types of glasses. Both the glasses had inner radius 3cm. The height of both the glasses was 10cm.	
	First type: A Glass with hemispherical raised bottom.	
	Second type: A glass with conical raised bottom of height 1.5 cm.	
	Isha insisted to have the juice in first type of glass and her father decided to have the juice in second type of glass. Out of the two, Isha or her father Suresh, who got more quantity of juice to drink and by how much?	
	Section C	
27	Given that $\sqrt{5}$ is irrational, prove that $2\sqrt{5} - 3$ is an irrational number.	3
	OR	
	If HCF of 144 and 180 is expressed in the form 13m-16. Find the value of m.	

7

28	If the sum of first m terms of an AP is the same as the sum of its first n terms, show	3
_	that the sum of its first (m+n) terms is zero.	
29	In the figure, ABCDE is a pentagon with BE CD and BC DE. BC is perpendicular to	3
_	CD. AB= 5cm, AE=5cm, BE= 7cm, BC= x-y and CD= x+y. If the perimeter of ABCDE is 27cm. find the value of x and y, given x, $y \neq 0$.	
	Solve the following system of equations:	
	$\frac{21}{x} + \frac{47}{y} = 110$	
	$\frac{47}{x} + \frac{21}{y} = 162, x, y \neq 0$	
30	Obtain all the zeros of the polynomial $x^4+4x^3-2x^2-20x-15$, if two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.	3
31	Two friends Seema and Aditya work in the same office at Delhi. In the Christmas vacations, both decided to go to their hometowns represented by Town A and Town B respectively in the figure given below. Town A and Town B are connected by trains from the same station C (in the given figure)in Delhi.Based on the given situation, answer the following questions:	

	 (i) Who will travel more distance, Seema or Aditya, to reach to their hometown? (ii) Seema and Aditya planned to meet at a location D situated at a point D represented by the mid-point of the line joining the points represented by the point D. (iii) Find the area of the triangle formed by joining the points represented by A, B 	
32	If sin θ + cos $\theta = \sqrt{3}$, then prove that tan θ + cot θ =1	3
	OR Evaluate: $\frac{\cos^{2}(45^{\circ}+\theta) + \cos^{2}(45^{\circ}-\theta)}{\tan(60^{\circ}+\theta) \times \tan(30^{\circ}-\theta)} + (\cot 30^{\circ} + \sin 90^{\circ}) \times (\tan 60^{\circ} - \sec 0^{\circ})$	
33	Sides of a right triangular field are 25m, 24m and 7m. At the three corners of the field, a cow, a buffalo and a horse are tied separately with ropes of 3.5 m each to graze in the field. Find the area of the field that cannot be grazed by these animals.	

36	Prove that sides in dis		•	other two sid		•			4		
37) km at a un nutes less fo	-		-				
	OR Solve the following equation:										
		Ū									
	$\frac{1}{x}$ -	$\frac{1}{x-2} = 3, x$:≠0,2								
38	lower and	upper ends	s as 20 m a	r frustum of and 50 m re	spectively. F	Find the co	ost of petro	l which can			
	fill the tank completely at the rate of Rs. 70 per litre. Also find the surface area of the tank.							area of the			
	lank.			OR							
				C	R						
	Wat <mark>er</mark> is f	ond which i		C f 15km/hour g and 44m w	r through a						
	Water is f cuboidal po pond rise b	ond which i by 21cm?	s 50m long	f 15km/hou g and 44m w	r through a ide. In what	time will th	ne level of v	water in the			
39	Water is f cuboidal po pond rise b The angle 30 second	ond which i by 21cm? of elevatio s, the angl	s 50m long n of an air e of eleva	f 15km/hou	r through a ide. In what a point on th s 30 ⁰ . If the	time will the ground	ne level of v is 60 ⁰ . Afte	water in the	4		
	Water is f cuboidal po pond rise b The angle 30 second height of 30	ond which in the py 21cm? of elevations, the angle $000\sqrt{3}$ m, f	s 50m long n of an air e of eleva ind the spe	f 15km/hour g and 44m w plane from a tion become eed of the air	r through a ride. In what a point on the rs 30 ⁰ . If the	time will the ground is airplane	ne level of v is 60 ⁰ . Afte is flying at	water in the	4		
39 40	Water is f cuboidal po pond rise b The angle 30 second height of 30	ond which in the py 21cm? of elevations, the angle $000\sqrt{3}$ m, f	s 50m long n of an air e of eleva ind the spe	f 15km/hou g and 44m w plane from a tion become	r through a ride. In what a point on the rs 30 ⁰ . If the	time will the ground is airplane	ne level of v is 60 ⁰ . Afte is flying at	water in the	4		

Sample Paper 2

	Section-A	
1	(c) 3 decimal places	1
2	(a) 165	1
3	(c) 20	1
4	(a) all real values except 10	1
5	(d) not defined	1
6	(a) $\sqrt{2} - 1$	1
7	(d) 30°	1
8	(d) IV quadrant	1
9	(c) 4	1
10	(a) -12	1
11	$\pi r l + 2\pi r h + \pi r^2$	1
12	4	1
	OR	1
	5	1
13	49 : 81	1
14	14, 38	$\frac{1}{2} + \frac{1}{2}$
15	$\frac{3}{11}$	1
16	Rational number= 0.30	$\frac{1}{2}$
	Irrational number = 0.3010203040	$\frac{1}{2}$
	Or any other correct rational and irrational number	
17	$\Delta ACB \sim \Delta ADC$ (AA criterion)	$\frac{1}{2}$

$\Rightarrow \frac{AC}{AD} = \frac{AB}{AC}$ $\therefore AB = 12 \text{ cm}$	2
$\therefore AB = 12 \text{ cm}$	
B P	
In $\triangle OBP$, $\frac{OB}{OP} = \sin 30^{\circ}$ $\therefore OP = 2r$	$\frac{1}{2}$ $\frac{1}{2}$
OR	Ζ.
Length of Tangent = $2 \times \sqrt{5^2 - 4^2} = 2 \times 3 \ cm = 6 \ cm$	$\frac{1}{2} + \frac{1}{2}$
b, c and 2b are in A.P \Rightarrow c = $\frac{3b}{2}$	$\frac{1}{2}$
$\therefore b:c=2:3$	$\frac{1}{2}$
$D = (2\sqrt{2}k)^2 - 4(1)(18) = 0 \Rightarrow k = \pm 3$	$\frac{1}{2} \frac{1}{2}$
Section-B	a
110, 120, 130, , 990	
$a_n = 990 \Rightarrow 110 + (n - 1) \times 10 = 990$	1
	1
\Rightarrow AP + BP + CR + DR = AS + BQ + CQ + DS	1
	1
$A \qquad P \qquad B \qquad \therefore AB = AD$	–
Hence, ABCD is a square.	
$\Delta ADE \sim \Delta GBD$ and $\Delta ADE \sim \Delta FEC$	
$\Rightarrow \Delta GBD \sim \Delta FEC$ (AA Criterion)	1
$\Rightarrow \frac{GD}{FC} = \frac{GB}{FE} \Rightarrow GD \times FE = GB \times FC \text{ or } FG^2 = BG \times FC$	1
OR	
	$\therefore OP = 2r$ OR Length of Tangent = $2 \times \sqrt{5^2 - 4^2} = 2 \times 3 cm = 6 cm$ $b, c \text{ and } 2b \text{ are in } A.P \Rightarrow c = \frac{3b}{2}$ $\therefore b: c = 2:3$ $D = (2\sqrt{2}k)^2 - 4(1)(18) = 0 \Rightarrow k = \pm 3$ $D = (2\sqrt{2}k)^2 - 4(1)(18) = 0 \Rightarrow k = \pm 3$ I10, 120, 130,, 990 $a_n = 990 \Rightarrow 110 + (n - 1) \times 10 = 990$ $\therefore n = 89$ D $A = P$ B $A = AD$ $A = AD$ $AB = AD$ $ADE \sim \Delta GBD$ and $\Delta ADE \sim \Delta FEC$ $\Rightarrow \Delta GBD \sim \Delta FEC$ (AA Criterion) $\Rightarrow \frac{GD}{FC} = \frac{GB}{FE} \Rightarrow GD \times FE = GB \times FC$ or $FG^2 = BG \times FC$

A B D C AD $\perp BC \therefore \ln \Delta ABD, AB^2 = AD^2 + BD^2$ $\Rightarrow AB^2 = AD^2 + \frac{BC^2}{4} \text{ or } 4AB^2 = 4AD^2 + BC^2$ $\Rightarrow 3AB^2 = 4AD^2$ 24 (i) $\cos(90^\circ - \theta) = \cos(3\theta - 30^\circ)$ $\Rightarrow 90^\circ - \theta = 3\theta - 30^\circ \Rightarrow \theta = 30^\circ$ (ii) $\frac{AB}{AC} = \sin 30^\circ$ \therefore Length of rope = $AC = 400 \text{ m}$	
25 For Jayanti, Favourable outcome is (6,6) i.e, 1 Probability(getting the number 36) = $\frac{1}{36}$	1
For Pihu, Favourable outcome is 6 i.e, 1	1
Probability(getting the number 36) = $\frac{1}{6}$	1
∴ Pihu has the better chance. OR	1
Total number of integers = 29 (i) Prob.(prime number) = $\frac{6}{29}$	
(ii) Prob.(number divisible by 7) = $\frac{4}{29}$	

26	Capacity of first glass = $\pi r^2 H - \frac{2}{3}\pi r^3$ = $\pi \times 9(10 - 2) = 72\pi cm^3$	1
	Capacity of second glass = $\pi r^2 H - \frac{1}{3}\pi r^2 h$ = $\pi \times 3 \times 3(10 - 0.5) = 85.5\pi cm^3$ Sureshgot more quantity of juice.	1
	Soction C	
	Section - C	
27	Let us assume, to the contrary, that $2\sqrt{5} - 3$ is a rational number $\therefore 2\sqrt{5} - 3 = \frac{p}{q}$, where p and q are integers and $q \neq 0$ $\Rightarrow \sqrt{5} = \frac{p+3q}{q}$ (1)	1
	$\Rightarrow \sqrt{5} = \frac{p+3q}{2q} \dots (1)$ Since p and q are integers $\therefore \frac{p+3q}{2q}$ is a rational number	1
	$\sqrt{5}$ is a rational number which is a contradiction as $\sqrt{5}$ is an irrational number Hence our assumption is wrong and hence $2\sqrt{5} - 3$ is an irrational	1
	number.	
	OR	2
	$180 = 144 \times 1 + 36$ $144 = 36 \times 4 + 0$ $\therefore \text{ HCF}(180, 144) = 36$	1
	36 = 13m - 16 Solving, we get $m = 4$	
28	$S_m = S_n \Rightarrow \frac{m}{2} [2a + (m-1)d] = \frac{n}{2} [2a + (n-1)d]$ $\Rightarrow 2a(m-n) + d(m^2 - m - n^2 + n) = 0$ $\Rightarrow (m-n)[2a + (m+n-1)d] = 0 \text{ or } S_{m+n} = 0$	1 1 1
29	x + y = 7 and $2(x - y) + x + y + 5 + 5 = 27\therefore x + y = 7 and 3x - y = 17$	$\frac{\frac{1}{2}+1}{\frac{1}{2}}$
	Solving, we get, $x = 6$ and $y = 1$	1

	OR	
	Let $\frac{1}{x} = a$ and $\frac{1}{y} = b$	
	$\Rightarrow 21a + 47 b = 110$ and $47a + 21b = 162$	1
	Adding and subtracting the two equations, we get	1
	a+b=4 and $a-b=2$	1
	Solving the above two equations, we get $a = 3$ and	
	b = 1 $\therefore x = \frac{1}{3} \text{ and } y = 1$ $p(x) = x^4 + 4x^3 - 2x^2 - 20x - 15$	
30		
	$x^2 - 5$ is factor of $p(x)$	2
	$\therefore p(x) = (x^2 - 5)(x^2 + 4x + 3)$	1
	Or $p(x) = (x^2 - 5)(x + 3)(x + 1)$	1
	So, all the zeroes of $p(x)$ are $\sqrt{5}, -\sqrt{5}, -3$ and -1	a
31	(i) A(1,7), B(4,2) C(-4,4)	
	Distance travelled by Seema = $\sqrt{34}$ units	
	Distance travelled by Aditya = $\sqrt{68}$ units	1
	 Aditya travels more distance 	
	(ii) Coordinates of D are $\left(\frac{1+4}{2}, \frac{7+2}{2}\right) = \left(\frac{5}{2}, \frac{9}{2}\right)$	1
	(iii) $ar(\Delta ABC) = \frac{1}{2}[1(2-4) + 4(4-7) - 4(7-2)]$	
	= 17 sq. units	1
32	$\sin\theta + \cos\theta = \sqrt{3} \Rightarrow (\sin\theta + \cos\theta)^2 = 3$	1
	$\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \Rightarrow \sin\theta\cos\theta = 1$	1
	$\therefore \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 1$	1

	OR						
	$\frac{\cos^{2}(45^{\circ}+\theta)+\cos^{2}(45^{\circ}-\theta)}{\tan(60^{\circ}+\theta)\times\tan(30^{\circ}-\theta)} + (\cot 30^{\circ}+\sin 90^{\circ}) \times (\tan 60^{\circ}-\sec 0^{\circ})$						
	$= \frac{\cos^2(45^\circ+\theta) + \sin^2(45^\circ+\theta)}{\tan(60^\circ+\theta) \times \cot(60^\circ+\theta)} + (\sqrt{3}+1) \times (\sqrt{3}-1)$						
	= 1 + 2 = 3						
33	Required Area = Area of triangle - Area of 3 sectors						
	Area of Triangle = $\frac{1}{2} \times 24 \times 7 = 84 m^2$	1					
	Area of three sectors = $\frac{\pi r^2}{360^\circ}$ ×(sum of three angles of triangle)						
	$=\frac{22\times7\times7\times180^{\circ}}{7\times2\times2\times360^{\circ}}=\frac{77}{4} \text{ or } 19.25 m^{2}$						
	7×2×2×360 4	1					
	$\therefore \text{ Required Area} = \frac{259}{4} \text{ or } 64.75 m^2$						
34	(i) Curve 1 - Less than ogive, Curve2 - More than ogive	1					
	(ii) Median Rainfall = 21 cm	1					
	(iii) 3 Median = Mode + 2 mean	1					
	\therefore Mode = 16.2 cm						
	<u>Section-D</u>						
35	Correct construction of given triangle	1					
	Correct construction of similar Δ with scale factor $\frac{3}{4}$						
	OR						
	Correct construction of given circle						
	Correct construction of two tangents	1					
		3					
36	For correct given, to prove, const. and figure	$(4 \times \frac{1}{4})$					
		$(4 \times \frac{1}{2})$ = 2)					
		- 2)					
	For correct proof	2					
37	Let the original speed of the train be $x \text{ km/h}$						
		2					
	$\therefore \frac{360}{x} - \frac{360}{x+5} = \frac{48}{60}$ $\Rightarrow x^2 + 5x - 2250 = 0$	1					
	$\Rightarrow x^- + 5x - 2250 = 0$						

	$\Rightarrow (x + 50)(x - 45) = 0 \therefore x = 45$ Hence original speed of the train = 45km/h	1							
	OR								
	$\frac{1}{x} - \frac{1}{x-2} = 3$ $\frac{x-2-x}{x(x-2)} = \frac{3}{1}$ $3x^2 - 6x = -2$								
							$3x^2 - 6x + 2 = 0$		
							$x = \frac{6 \pm \sqrt{12}}{6}$	1	
	$= \frac{3+\sqrt{3}}{3}, \frac{3-\sqrt{3}}{3}$								
38	Capacity of tank = $\frac{1}{3}\pi \times 20 \times (10^2 + 25^2 + 10 \times 25)m^3$ = $\pi \times 20 \times 325m^3 = \pi \times 20 \times 325l$								
	Cost of petrol = $\pi \times 20 \times 325 \times 70 = \texttt{1}430000$								
	Slant height = $\sqrt{20^2 + (25 - 10)^2} = 25m$	1							
	Surface area of tank = $\pi imes 25(10 + 25)m^2 = 2750m^2$	1							
	OR	2							
	Quantity of water flowing through pipe in 1 hour								
	$= \pi \times \frac{7}{100} \times \frac{7}{100} \times 15000 m^{3}$ Required time = $\left(50 \times 44 \times \frac{21}{100}\right) \div \left(\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000\right)$ = 2 hours	2							

39									
A B C									
Correct figure									
	In ΔABE , $\frac{BE}{AB} = \tan 60^{\circ}$								
	$\Rightarrow AB = 3000 \text{ m}$								
	In ΔDAC , $\frac{DC}{AC} = \tan 30^{\circ}$ $\Rightarrow AC = 9000 \text{ m}$								
	BC = AC - AB = 6000m								
	\therefore Speed of aeroplane = $\frac{6000}{30}m/s = 200m/s$								
40	Daily	Number of	x _i	u _i	f _i u _i				
	Wages(in	Workers (f_i)							
	Rs.)								
	<u>1</u> 00-120	10	110	-3	-30				
	120-140	15	130	-2	-30				
	140-160	20	150	-1	-20				
	160-180	22	170	0	0				
	180-200	18	190	1	18				
	200-220	12	210	2	24	2			
	220-240	13	230	3	39				
	Total	110			1	1			
Mean daily wages = $170 + \frac{1}{110} \times 20 = ₹170.19$ (approx.) Mode = $160 + \frac{22-20}{44-20-18} \times 20 = ₹166.67$ (approx.)									