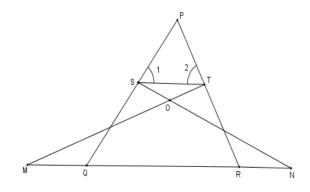


Sample-Papers 1 with solution

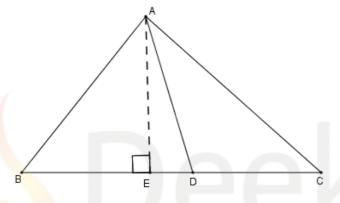
Time allowed: 3 Hours

Max. Marks: 80


General Instructions:

- 1. All the questions are compulsory.
- 2. The questions paper consists of 30 questions divided into 4 sections A, B, C and D.
- 3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculators is not permitted.

	Section-A	
1.	Find the value of a, for which point P ($\frac{a}{3}$, 2) is the mid-point of the line segment joining the points Q(-5,4) and R(-1,0).	1
2.	Find the value of k, for which one root of the quadratic equation $kx^2-14x+8=0$ is 2.	1
	Find the value(s) of k for which the equation $x^2 + 5kx + 16 = 0$ has real and equal roots.	_
3.	Write the value of $\cot^2 \theta - \frac{1}{\sin^2 \theta}$	1
	OR	
	If $sin\theta = cos\theta$, then find the value of $2tan\theta + cos^2\theta$	
4.	If nth term of an A.P. is (2n+1), what is the sum of its first three terms?	1
5.	In figure if AD= 6cm, DB=9cm, AE = 8cm and EC = 12cm and \angle ADE = 48°. Find \angle ABC	1
6.	After how many decimal places will the decimal expansion of $\frac{23}{2^4 \times 5^3}$ terminate?	1


	Section-B	
7.	The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45, find the other number.	2
	OR	
	Show that $7 - \sqrt{5}$ is irrational, give that $\sqrt{5}$ is irrational.	
8.	Find the 20 th term from the last term of the AP 3,8,13,,253	2
	OR	
	If 7 times the 7 th term of an A.P is equal to 11 times its 11 th term, then find its 18 th term.	
9.	Find the coordinates of the point P which divides the join of A(-2,5) and B(3,-5) in the ratio 2:3	2
10.	A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen.	2
11.	Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number	2
12.	For what value of p will the following pair of linear equations have infinitely many solutions $ (p-3)x+3y=p \\ px+py=12 $	2
	Section-C	
13.	Use Euclid's Division Algorithm to find the HCF of 726 and 275.	3
14.	Find the zeroes of the following polynomial: $5\sqrt{5}x^2+30x+8\sqrt{5}$	3
15.	Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars.	3
16.	The points $A(1,-2)$, $B(2,3)$, $C(k,2)$ and $D(-4,-3)$ are the vertices of a parallelogram. Find the value of k .	3
	OR	
	Find the value of k for which the points (3k-1,k-2), (k,k-7) and (k-1,-k-2) are collinear.	
17.	Prove that $cot\theta - tan\theta = \frac{2cos^2\theta - 1}{sin\theta cos\theta}$	3
	OR	
	Prove that $sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta) = sec\theta + cosec\theta$	
18.	The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.	3

19. In figure $\angle 1 = \angle 2$ and $\triangle NSQ \cong \triangle MTR$, then prove that $\triangle PTS \sim \triangle PRQ$.

OR

In \triangle ABC, if AD is the median, then show that AB²+AC² = 2(AD²+BD²)

20. Find the area of the minor segment of a circle of radius 42cm, if length of the corresponding arc is 44cm.

3

21. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm.

OR

A solid sphere of radius 3 cm is melted and then recast into small spherical balls each of diameter 0.6cm. Find the number of balls.

22. The table shows the daily expenditure on grocery of 25 households in a locality. Find the modal daily expenditure on grocery by a suitable method.

3

Daily	100-150	150-200	200-250	250-300	300-350
Expenditure					
(in Rs.)					
No of	4	5	12	2	2
households					

			Section-D			
23.		2 hours less for a journey of 30 Find the usual speed of the train	<u> </u>	by 5 km/h from its	4	
			OR			
	Solve for $x:{(a^n)^n}$	$\frac{1}{+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$, [$a \neq 0, b$	$\neq 0, x \neq 0, x \neq -(a+b)]$			
24.	An AP consis term.	sts of 50 terms of which 3 rd term	m is 12 and the last term is 10	6. Find the 29 th	4	
25.	Prove that in a of other two s	a right angled triangle square o	of the hypotenuse is equal to s	sum of the squares	4	
26.		Draw a $\triangle ABC$ with sides 6cm, 8cm and 9 cm and then construct a triangle similar to $\triangle ABC$ whose sides are $\frac{3}{5}$ of the corresponding sides of $\triangle ABC$.				
27.	coming direct	e top of a vertical observation to tly towards it. If it takes 12 min www long will the car take to reac	nutes for the angle of depress	sion to change from		
	The angle of e	elevation of a cloud from a poi			_	
28.	The angle of e is 30° and the Find the heigh	elevation of a cloud from a point angle of depression of its shad that of the cloud from the surface of the following data is 525. First	nt 60 m above the surface of low from the same point in we of water.	rater of lake is 60°.	4	
228.	The angle of 6 is 30° and the Find the height	angle of depression of its shad ht of the cloud from the surface	nt 60 m above the surface of low from the same point in we of water.	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad ht of the cloud from the surface of the following data is 525. Fire	nt 60 m above the surface of low from the same point in we of water.	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad the of the cloud from the surface of the following data is 525. Fire Class Interval	nt 60 m above the surface of low from the same point in we of water. Indeed the values of x and y if the Frequency	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad the of the cloud from the surface of the following data is 525. First Class Interval	nt 60 m above the surface of low from the same point in we of water. Indeed the values of x and y if the requency	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad the of the cloud from the surface of the following data is 525. First Class Interval 0-100 100-200	nt 60 m above the surface of low from the same point in we of water. Indeed the values of x and y if the surface of x and y if the x and y	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad the of the cloud from the surface of the following data is 525. First Class Interval 0-100 100-200 200-300	nt 60 m above the surface of low from the same point in we of water. Indeed the values of x and y if the surface of x and y if the x and y if the x and y if the surface of x and y if the x	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad the of the cloud from the surface of the following data is 525. First Class Interval 0-100 100-200 200-300 300-400	nt 60 m above the surface of low from the same point in we of water. Indeed the values of x and y if the surface of x and y if the x and y if t	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad the of the cloud from the surface of the following data is 525. First Class Interval 0-100 100-200 200-300 300-400 400-500	nt 60 m above the surface of low from the same point in we of water. Indeed the values of x and y if the same point in we have a same point in which in which it was a same point in which it was a same point in which in which it was a same point in which	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad the of the cloud from the surface of the following data is 525. First Class Interval 0-100 100-200 200-300 300-400 400-500 500-600	nt 60 m above the surface of low from the same point in we of water. Independent of the same point in we have of water. The same point in we have of water. The same point in we have of water. The same point in we have a same point in which it was a same point	rater of lake is 60°.	4	
28.	The angle of 6 is 30° and the Find the height	angle of depression of its shad ht of the cloud from the surface of the following data is 525. Fire Class Interval 0-100 100-200 200-300 300-400 400-500 500-600 600-700	nt 60 m above the surface of low from the same point in we of water. Indeed the values of x and y if the same point in we have a same point in which it was a same poin	rater of lake is 60°.	4	

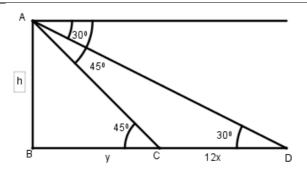
Marks	Number of students	
0-10	5	
10-20	3	
20-30	4	
30-40	3	
40-50	4	
50-60	4	
 60-70	7	
70-80	9	
80-90	7	
90-100	8	
	a above and hence find the media of height 24 cm are 15 cm and 5	

Class: X Mathematics Marking Scheme 2018-19

Time allowed: 3hrs Maximum Marks: 80

Q No	SECTION A	Marks
1	$\left(\frac{-5+(-1)}{2}, \frac{4+0}{2}\right) = \left(\frac{a}{3}, 2\right)$ $\frac{a}{3} = \frac{-6}{2} \implies a = -9 \implies$	1
2	$4K - 28 + 8 = 0$ $K = 5$ OR For roots to be real and equal, $b^2 - 4ac = 0$ $(5k)^2 - 4 \times 1 \times 16 = 0$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
3	$k = \pm \frac{8}{5}$ $\cot^2 \theta - \frac{1}{\sin^2 \theta} \cdot \cot^2 \theta - \csc^2 \theta$ $= -1$ OR	1 1/2 1/2
4	$\sin\theta = \cos\theta \theta = 45^{\circ}$ $\therefore 2\tan\theta + \cos^2\theta = 2 + \frac{1}{2} = \frac{5}{2}$ $a_1 = 3, a_3 = 7$	1/ ₂ 1/ ₂
	$s_3 = \frac{3}{2}(3+7) = 15$	
5	$\frac{AD}{DB} = \frac{AE}{EC} \qquad DE \parallel BC$ $\implies \angle ADE = \angle ABC = 48^{\circ}$	1/2 $1/2$
6	4 places	1
	SECTION B	
7	HCF × LCM = Product of two numbers $9 \times 360 = 45 \times 2^{nd}$ number 2^{nd} number = 72	1
	OR	

	Let us assume, to the contrary that $7 - \sqrt{5}$ is irrational	
	$7 - \sqrt{5} = \frac{p}{a}$, Where p & q are co-prime and $q \neq 0$	
	7	1
	$=\sqrt{5} = \frac{7q - p}{q}$	
	$\frac{7q-p}{q}$ is rational = $\sqrt{5}$ is rational which is a contradiction	1
	Hence $7 - \sqrt{5}$ is irrational	
8	20^{th} term from the end = $l - (n-1)d$	1/2
	$= 253-19 \times 5$ = 158	1
	- 138	$1 \frac{1}{1/2}$
	OR	
	$7a_7 = 11a_{11} \implies 7(a+6d) = 11(a+10d)$	1
		1
	$\implies a + 17d = 0 : a_{18} = 0$	1
9	$X = \frac{6-6}{5} = 0$	1
	$Y = \frac{-10+15}{5} = 1$	1
	5	M
10	Probability of either a red card or a queen	1
	$=\frac{26+2}{52}=\frac{28}{52}$	
	P(neither red car nor a queen) = $1 - \frac{28}{52}$	1
	$= \frac{52}{52} \text{ or } \frac{7}{13}$	6
	$-\frac{1}{52}$ Of $\frac{1}{13}$	
11	Total number of outcomes = 36	1
	Favourable outcomes are (1,2), (2,1), (1,3), (3,1), (1,5), (5,1) i.e. 6	1
	Required probability = $\frac{6}{36}$ or $\frac{1}{6}$	
	36 6	
12	For infinitely many solutions	1/2
	$\frac{p-3}{p} = \frac{3}{p} = \frac{-p}{-12}$	/ 2
	$\implies p^2 - 3p = 3p \qquad \text{or} \qquad 12 \times 3 = p^2$	1
	$\implies p^2 - 6p = 0$ or $p = \pm 6$	
	p = 0.6	
	$\Longrightarrow p = 6$	
	SECTION: C	
10		
13	By Euclid's Division lemma	6 ×
	$726 = 275 \times 2 + 176$ $275 = 176 \times 1 + 99$	1/2 =
	$176 = 99 \times 1 + 77$	3
	$99 = 77 \times 1 + 22$	
	$77=22 \times 3 + 11$	
	$22 = 11 \times 2 + 0$	
	HCF = 11	


14	$5\sqrt{5}x^2+30x+8\sqrt{5}$	1
	$= 5\sqrt{5}x^2 + 20x + 10x + 8\sqrt{5}$	
	$= 5x(\sqrt{5}x + 4) + 2\sqrt{5}(\sqrt{5}x + 4)$ = $(\sqrt{5}x + 4)(5x + 2\sqrt{5})$	
	Zeroes are $\frac{-4}{\sqrt{5}} = \frac{-4\sqrt{5}}{5}$ and $\frac{-2\sqrt{5}}{5}$	1 1
	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	_
15	Let the speed of car at A be x km/h	1
	And the speed of car at B be y km/h Case 1 $8x-8y = 80$	
	x-y=10	
	Case 2 $\frac{4}{3}x + \frac{4}{3}y = 80$	1
	x+y = 60 on solving $x=35$ and $y=25$	1
	Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively.	1
1.6		1,
16	(-4,-3) D	11/2
	A _(1,-2) B _(2,3)	M
	Diagonals of parallelogram bisect each other	1,
	\longrightarrow midpoint of AC = midpoint of BD	1/2
	$\left(\frac{1+k}{2}, \frac{-2+2}{2}\right) = \left(\frac{-4+2}{2}, \frac{-3+3}{2}\right)$	1
	$\frac{1+k}{2} = \frac{-2}{2}$ $k = -3$	
	k = -3	
	OR	
	For collinearity of the points, area of the triangle formed by given Points is zero.	
	$\implies \frac{1}{2} \left\{ (3k-1)(k-7+k+2) + k(-k-2-k+2) + (k-1)(k-2-k+1) \right\}$	1
	7) = 0	1
	$\implies \{(3k-1)(2k-5) - 2k^2 + 5k - 5\} = 0$ $\implies 4k^2 - 12k = 0$	1
	\Longrightarrow $k=0$, 3	1
17	LHS = $\cot\theta$ - $\tan\theta$	1
	$=\frac{\cos\theta}{\sin\theta}$ - $\frac{\sin\theta}{\cos\theta}$	1 /
	$= \frac{\cos^2\theta - \sin^2\theta}{\sin\theta\cos\theta}$	1/2
	$=\frac{\cos^2\theta-1+\cos^2\theta}{\cos^2\theta-1+\cos^2\theta}$	1
	$= \frac{\sin\theta \cos\theta}{\frac{2\cos^2\theta - 1}{\sin\theta \cos\theta}} = RHS$	1/2
	sinθ cosθ	
	OR	

LHS = $\sin\theta(1 + \tan\theta) + \cos\theta(1 + \cot\theta)$ = $\sin\theta\left(1 + \frac{\sin\theta}{\cos\theta}\right) + \cos\theta\left(1 + \frac{\cos\theta}{\sin\theta}\right)$	1
$= \sin\theta \left(\frac{\cos\theta + \sin\theta}{\cos\theta} \right) + \cos\theta \left(\frac{\sin\theta + \cos\theta}{\sin\theta} \right)$	1
$= (\cos\theta + \sin\theta) (\frac{\sin^2\theta + \cos^2\theta}{\cos\theta \sin\theta})$ $= \frac{\cos\theta + \sin\theta}{\cos\theta \sin\theta} = \csc\theta + \sec\theta = \text{RHS}$	1
SECTION: E	
18 A O O D D D	1
∠APB = 90 ⁰ (angle in semi-circle) ∠ODB = 90 ⁰ (radius is perpendicular to tangent) $\Delta ABP \sim \Delta OBD$ $\Rightarrow \frac{AB}{OB} = \frac{AP}{OD}$	1/2
$\implies \frac{26}{13} = \frac{AP}{8}$ $\implies AP = 16cm$	9
$\angle 1 = \angle 2$ \Rightarrow $PT=PS$ (i)	1
$\Delta NSQ \cong \Delta MTR$ $\Longrightarrow \angle NQS = \angle MRT$ $\Longrightarrow \angle PQR = \angle PRQ$ $\Longrightarrow PR = PQ$ (ii)	
From (i) and (ii) $\frac{PT}{PR} = \frac{PS}{PQ}$ Also, $\angle TPS = \angle RPQ$ (common)	1
⇒ ΔPTS~ΔPRQ OR	-

		1
	AD is median, So BD=DC. $AB^2 = AE^2 + BE^2 \\ AC^2 = AE^2 + EC^2$	1
	Adding both, $AB^{2}+AC^{2} = 2AE^{2}+BE^{2}+CE^{2}$ $= 2(AD^{2}-ED^{2})+(BD-ED)^{2}+(DC+ED)^{2}$ $= 2AD^{2}-2ED^{2}+BD^{2}+ED^{2}-2BD.ED+DC^{2}+ED^{2}+2CD.ED$	1
20	$= 2AD^{2}+BD^{2}+CD^{2}$ $= 2(AD^{2}+BD^{2})$ $r = 42cm$ $2\pi r\theta = 44$	1
	$\frac{2\pi r\theta}{360^{\circ}} = 44$ $\theta = \frac{44 \times 360 \times 7}{2 \times 22 \times 42} = 60^{\circ}$ Area of minor segment = area of sector – area of corresponding triangle	
	$= \frac{\pi r^2 \theta}{360^{\circ}} - \frac{\sqrt{3}}{4} r^2$ $= r^2 \left[\frac{22}{7} \times \frac{60}{360} - \frac{\sqrt{3}}{4} \right]$ $= 42 \times 42 \left[\frac{11}{21} - \frac{\sqrt{3}}{4} \right]$	$\frac{1}{2}$
	$= 42 \times 42 \times \left[\frac{44 - 21\sqrt{3}}{84}\right]$ $= 21 (44 - 21\sqrt{3}) \text{ cm}^2$	1
21	Volume of water flowing through pipe in 1 hour $= \frac{22}{7} \times 15 \times 1000 \times \frac{7}{100} \times \frac{7}{100}$ $= 231 \text{ m}^3$ Volume of rectangular tank = $50 \times 44 \times \frac{21}{100}$	1
	$= 22 \times 21 \text{ m}^{3}$ Time taken to flow 231 m ³ of water = 1 hours $\therefore \text{ Time taken to flow } 22 \times 21 \text{ m}^{3} \text{ of water} = \frac{1}{231} \times 22 \times 21 = 2 \text{ hours}$	1
	OR Number of halls = Volume of solid sphere	
	$= \frac{\frac{4}{3} \times \pi \times 3 \times 3 \times 3}{\frac{4}{3} \times \pi \times 0.3 \times 0.3 \times 0.3}$ $= 1000$ Volume of 1 spherical ball $= \frac{1000}{4}$	1
		1

22	200-250 is the modal class	1
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	1
	$-200 + ^{12-5} \times 50$	1/2
	$=200+\frac{12-5}{24-5-2}\times 50$	1/2 $1/2$
	= 200+20.59 = Rs. 220.59	
	C C D	
	Section D	
23	Let the usual speed of the train be x km/h	2
	$\frac{300}{x} - \frac{300}{x+5} = 2$	
		1
	$\implies \begin{array}{c} x^2 + 5x - 750 = 0 \\ (x + 30)(x - 25) = 0 \end{array}$	
	$\implies x = -30,25$ ∴ Usual Speed of the train = 25 km/h	1
	OR 1 1 1 1 1	a .
	$\frac{1}{(a+b+x)} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$ $\Rightarrow \frac{x-a-b-x}{x(a+b+x)} = \frac{b+a}{ab}$	9 1
	$x(a+b+x) = ab$ $\Rightarrow -ab = x^2 + (a+b)x$	1
	$\Rightarrow x^2 + ax + bx + ab = 0$	1
	$\Rightarrow (x+a)(x+b) = 0$ $\Rightarrow x = -a, -b$	1
24	$n=50$, $a_3=12$ and $a_{50}=106$	1/
	a+2d=12	1/ ₂ 1
	a+49d = 106 on solving, $d=2$ and $a=8$	1
	$a_{29} = a + 28d$	1/2
	$= 8+28\times 2 = 64$	1
25	Correct given, To prove, figure and construction	1/2
		× 4 = 2
	Correct proof	2
26	Correct construction of ΔABC	1
	Correct construction of similar triangle	3

27

1

Correct figure

1

Let the speed of car be x m/ minutes In $\triangle ABC$,

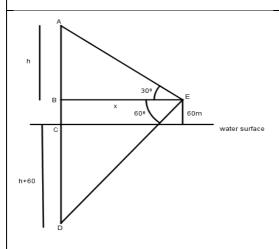
 $\frac{1}{2}$ $\frac{1}{1}$

$$\frac{\frac{h}{y} = \tan 45^0}{h = y}$$

In $\triangle ABD$,

$$\frac{h}{y+12x} = \tan 30^{0}$$

$$\implies h\sqrt{3} = y+12x$$


$$y\sqrt{3} - y = 12x$$

$$y = \frac{12x}{\sqrt{3}-1} = \frac{12x(\sqrt{3}+1)}{2}$$

$$\implies y = 6x(\sqrt{3}+1)$$

Time taken from C to B = $6(\sqrt{3} + 1)$ minutes

OR

1

1

1/2

Correct figure

1/2

In
$$\triangle ABE$$
,
 $\frac{h}{x} = \tan 30^{\circ}$
 $\implies x = h\sqrt{3}$

]	$\Delta BDE,$ $\frac{h+60+60}{x} = \tan 60$ $h+120 = x\sqrt{3}$ $h+120 = h\sqrt{3} \times \sqrt{3}$ $2h = 120$ $h = 60$ eight of cloud from		r = (60 + 60)m = 12	20 <i>m</i>
28		Class Interval	Frequency	cf	1
		0-100	2	2	
		100-200	5	7	
		200-300	X	7+x	
		300-400	12	19+x	
		400-500	17	36+x	
	/	500-600	20	56+x	
	1	600-700	У	56+x+y	
		700-800	9	65+x+y	
		800-900	7	72+x+y	
		900-1000	4	76+x+y	
	60-80 is the Median = l $\implies 500$	$\Rightarrow 76+x+y=100$ $x+y=24$ 525 $\Rightarrow 500-600$ The median class $x+\frac{n-cf}{f} \times h$ $x+n-$) = 525	(i)	1/ ₂ 1/ ₂ 1
			OR		

		Marks	Number of students	cf	
		0-10	5	5	
		10-20	3	8	
		20-30	4	12	
		30-40	3	15	
		40-50	3	18	
		50-60	4	22	
		60-70	7	29	
		70-80	9	38	
		80-90	7	45	
		90-100	8	53	
	Correct table Drawing correct Ogive Median=64				1 2 1
29	$r_{1} = 15 \text{cm}, r_{2} = 5 \text{cm}$ $h = 24 \text{cm}$ $l = \sqrt{h^{2} + (r_{1} - r_{2})^{2}}$ $= \sqrt{24^{2} + 10^{2}} = 26 \text{cm}$ Curved surface area of bucket = $\pi(r_{1} + r_{2})l$ $= \frac{22}{7} \times (15 + 5) \times 26$ $= \frac{22 \times 20 \times 26}{7}$ $= \frac{11440}{7} \text{ cm}^{2} \text{ or } 1634.3 \text{ cm}^{2}$				1 1 1
30	1. $Sec\theta + tan\theta = p$ $\frac{1}{cos\theta} + \frac{sin\theta}{cos\theta} = p$ $1 + sin\theta = pcos\theta$ $= p\sqrt{1 - sin^2\theta}$ $(1 + sin\theta)^2 = p^2(1 - sin^2\theta)$ $1 + sin^2\theta + 2sin\theta = p^2 - p^2sin^2\theta$ $(1 + p^2) sin^2\theta + 2sin\theta + (1 - p^2) = 0$ $D = 4 - 4(1 + p^2)(1 - p^2)$ $= 4 - 4(1 - p^4) = 4p^4$ $Sin\theta = \frac{-2 \pm \sqrt{4p^4}}{2(1 + p^2)} = \frac{-1 \pm p^2}{(1 + p^2)}$ $= \frac{p^2 - 1}{p^2 + 1}, -1$ $\therefore Cosec \theta = \frac{p^2 + 1}{p^2 - 1}, -1$				1 1 1/2
	$\therefore Cosec \ \theta = \frac{1}{p^2 - 1} \ , -1$				